Suppr超能文献

利用 MEG 绘制运动皮层中β振荡的拓扑组织。

Mapping the topological organisation of beta oscillations in motor cortex using MEG.

机构信息

Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom.

Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom.

出版信息

Neuroimage. 2018 Nov 1;181:831-844. doi: 10.1016/j.neuroimage.2018.06.041. Epub 2018 Jun 28.

Abstract

The spatial topology of the human motor cortex has been well studied, particularly using functional Magnetic Resonance Imaging (fMRI) which allows spatial separation of haemodynamic responses arising from stimulation of different body parts, individual digits and even spatially separate areas of the same digit. However, the spatial organisation of electrophysiological responses, particularly neural oscillations (rhythmic changes in electrical potential across cellular assemblies) has been less well studied. Mapping the spatial signature of neural oscillations is possible using magnetoencephalography (MEG), however spatial differentiation of responses induced by movement of separate digits is a challenge, because the brain regions involved are separated by only a few millimetres. In this paper we first show, in simulation, how to optimise experimental design and beamformer spatial filtering techniques to increase the spatial specificity of MEG derived functional images. Combining this result with experimental data, we then capture the organisation of the post-movement beta band (13-30 Hz) oscillatory response to movement of digits 2 and 5 of the dominant hand, in individual subjects. By comparing these MEG results to ultra-high field (7T) fMRI, we also show significant spatial agreement between beta modulation and the blood oxygenation level dependent (BOLD) response. Our results show that, when using an optimised inverse solution and controlling subject movement (using custom fitted foam padding) the spatial resolution of MEG can be of order 3-5 mm. The method described offers exciting potential to understand better the cortical organisation of oscillations, and to probe such organisation in patient populations where those oscillations are known to be abnormal.

摘要

人类运动皮层的空间拓扑结构已经得到了很好的研究,特别是使用功能磁共振成像(fMRI),它可以将来自不同身体部位、单个手指甚至同一手指的不同空间区域刺激的血液动力学反应进行空间分离。然而,电生理反应,特别是神经振荡(细胞集合中电势能的节律变化)的空间组织,研究得较少。使用脑磁图(MEG)可以绘制神经振荡的空间特征,但由于涉及的脑区仅相隔几毫米,因此很难区分由单独手指运动引起的反应的空间差异。在本文中,我们首先在模拟中展示了如何优化实验设计和波束形成器空间滤波技术,以提高基于 MEG 的功能图像的空间特异性。将这一结果与实验数据相结合,我们随后在个体受试者中捕获了主导手的第 2 和第 5 指运动后的β波段(13-30 Hz)振荡反应的组织。通过将这些 MEG 结果与超高场(7T)fMRI 进行比较,我们还显示了β调制与血氧水平依赖(BOLD)反应之间的显著空间一致性。我们的结果表明,当使用优化的逆解和控制受试者运动(使用定制的泡沫衬垫)时,MEG 的空间分辨率可以达到 3-5 毫米的量级。所描述的方法为更好地理解皮层振荡的组织以及在已知这些振荡异常的患者群体中探究这种组织提供了令人兴奋的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0715/6150950/d864b1ad875e/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验