Tanaka Keita, Tsukahara Akihiko, Miyanaga Hiroki, Tsunematsu Shoji, Kato Takanori, Matsubara Yuji, Sakai Hiromu
Department of Science and Engineering, Tokyo Denki University, Saitama 350-0394, Japan.
Sumitomo Heavy Industries, Ltd., Yokosuka 237-0061, Japan.
Sensors (Basel). 2024 Sep 18;24(18):6044. doi: 10.3390/s24186044.
Magnetoencephalography (MEG) systems are advanced neuroimaging tools used to measure the magnetic fields produced by neuronal activity in the human brain. However, they require significant amounts of liquid helium to keep the superconducting quantum interference device (SQUID) sensors in a stable superconducting state. Additionally, MEG systems must be installed in a magnetically shielded room to minimize interference from external magnetic fields. We have developed an advanced MEG system that incorporates a superconducting magnetic shield and a zero-boil-off system. This system overcomes the typical limitations of traditional MEG systems, such as the frequent need for liquid helium refills and the spatial constraints imposed by magnetically shielded rooms. To validate the system, we conducted an evaluation using signal source estimation. This involved a phantom with 50 current sources of known location and magnitude under active zero-boil-off conditions. Our evaluations focused on the precision of the magnetic field distribution and the quantification of estimation errors. We achieved a consistent magnetic field distribution that matched the source current, maintaining an estimation error margin within 3.5 mm, regardless of the frequency of the signal source current. These findings affirm the practicality and efficacy of the system.
脑磁图(MEG)系统是用于测量人脑神经元活动产生的磁场的先进神经成像工具。然而,它们需要大量液氦来使超导量子干涉装置(SQUID)传感器保持在稳定的超导状态。此外,MEG系统必须安装在磁屏蔽室内,以尽量减少外部磁场的干扰。我们开发了一种先进的MEG系统,该系统集成了超导磁屏蔽和零蒸发系统。该系统克服了传统MEG系统的典型局限性,如频繁需要补充液氦以及磁屏蔽室带来的空间限制。为了验证该系统,我们使用信号源估计进行了评估。这涉及一个在主动零蒸发条件下具有50个已知位置和大小的电流源的模型。我们的评估重点是磁场分布的精度和估计误差的量化。我们实现了与源电流匹配的一致磁场分布,无论信号源电流的频率如何,估计误差幅度都保持在3.5毫米以内。这些发现证实了该系统的实用性和有效性。