Department of Physics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
J Chem Phys. 2018 Jun 28;148(24):241737. doi: 10.1063/1.5029279.
We incorporate in the Kohn-Sham self-consistent equation a trained neural-network projection from the charge density distribution to the Hartree-exchange-correlation potential n → V for a possible numerical approach to the exact Kohn-Sham scheme. The potential trained through a newly developed scheme enables us to evaluate the total energy without explicitly treating the formula of the exchange-correlation energy. With a case study of a simple model, we show that the well-trained neural-network V achieves accuracy for the charge density and total energy out of the model parameter range used for the training, indicating that the property of the elusive ideal functional form of V can approximately be encapsulated by the machine-learning construction. We also exemplify a factor that crucially limits the transferability-the boundary in the model parameter space where the number of the one-particle bound states changes-and see that this is cured by setting the training parameter range across that boundary. The training scheme and insights from the model study apply to more general systems, opening a novel path to numerically efficient Kohn-Sham potential.
我们在 Kohn-Sham 自洽方程中加入了一个经过训练的神经网络投影,该投影将电荷密度分布映射到 Hartree-交换相关势 n→V,以实现对精确 Kohn-Sham 方案的可能数值方法。通过新开发的方案训练的势能使我们能够在不明确处理交换相关能量公式的情况下评估总能量。通过对一个简单模型的案例研究,我们表明,经过良好训练的神经网络 V 在用于训练的模型参数范围之外实现了电荷密度和总能量的准确性,表明难以捉摸的理想势能形式的性质可以通过机器学习构造近似封装。我们还举例说明了一个关键限制可转移性的因素——模型参数空间中单粒子束缚态数量发生变化的边界——并看到通过在该边界上设置训练参数范围可以解决这个问题。该训练方案和模型研究的见解适用于更一般的系统,为数值高效的 Kohn-Sham 势能开辟了一条新途径。