Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads, 2800 Kongens Lyngby, Denmark.
Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, 2800 Kongens Lyngby, Denmark.
J Chem Phys. 2018 Jun 28;148(24):241735. doi: 10.1063/1.5023563.
Polymer solar cells admit numerous potential advantages including low energy payback time and scalable high-speed manufacturing, but the power conversion efficiency is currently lower than for their inorganic counterparts. In a Phenyl-C_61-Butyric-Acid-Methyl-Ester (PCBM)-based blended polymer solar cell, the optical gap of the polymer and the energetic alignment of the lowest unoccupied molecular orbital (LUMO) of the polymer and the PCBM are crucial for the device efficiency. Searching for new and better materials for polymer solar cells is a computationally costly affair using density functional theory (DFT) calculations. In this work, we propose a screening procedure using a simple string representation for a promising class of donor-acceptor polymers in conjunction with a grammar variational autoencoder. The model is trained on a dataset of 3989 monomers obtained from DFT calculations and is able to predict LUMO and the lowest optical transition energy for unseen molecules with mean absolute errors of 43 and 74 meV, respectively, without knowledge of the atomic positions. We demonstrate the merit of the model for generating new molecules with the desired LUMO and optical gap energies which increases the chance of finding suitable polymers by more than a factor of five in comparison to the randomised search used in gathering the training set.
聚合物太阳能电池具有许多潜在的优势,包括低能耗和可扩展的高速制造,但目前其能量转换效率仍低于无机同类产品。在以苯基-C_61-丁酸甲酯(PCBM)为基础的混合聚合物太阳能电池中,聚合物的光学间隙和聚合物的最低未占据分子轨道(LUMO)与 PCBM 的能量排列对器件效率至关重要。使用密度泛函理论(DFT)计算,寻找用于聚合物太阳能电池的新材料和更好的材料是一项计算成本很高的工作。在这项工作中,我们提出了一种筛选程序,使用简单的字符串表示法结合语法变分自动编码器对一类有前途的供体-受体聚合物进行筛选。该模型在由 DFT 计算获得的 3989 个单体数据集上进行训练,能够以 43 和 74 meV 的平均绝对误差预测未见分子的 LUMO 和最低光跃迁能量,而无需了解原子位置。我们展示了该模型在生成具有所需 LUMO 和光学间隙能量的新分子方面的优势,与用于收集训练集的随机搜索相比,这增加了找到合适聚合物的机会超过五倍。