Suppr超能文献

用于聚合物电解质发现的化学信息机器学习

Chemistry-Informed Machine Learning for Polymer Electrolyte Discovery.

作者信息

Bradford Gabriel, Lopez Jeffrey, Ruza Jurgis, Stolberg Michael A, Osterude Richard, Johnson Jeremiah A, Gomez-Bombarelli Rafael, Shao-Horn Yang

机构信息

Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts02139, United States.

Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts02139, United States.

出版信息

ACS Cent Sci. 2023 Jan 23;9(2):206-216. doi: 10.1021/acscentsci.2c01123. eCollection 2023 Feb 22.

Abstract

Solid polymer electrolytes (SPEs) have the potential to improve lithium-ion batteries by enhancing safety and enabling higher energy densities. However, SPEs suffer from significantly lower ionic conductivity than liquid and solid ceramic electrolytes, limiting their adoption in functional batteries. To facilitate more rapid discovery of high ionic conductivity SPEs, we developed a chemistry-informed machine learning model that accurately predicts ionic conductivity of SPEs. The model was trained on SPE ionic conductivity data from hundreds of experimental publications. Our chemistry-informed model encodes the Arrhenius equation, which describes temperature activated processes, into the readout layer of a state-of-the-art message passing neural network and has significantly improved accuracy over models that do not encode temperature dependence. Chemically informed readout layers are compatible with deep learning for other property prediction tasks and are especially useful where limited training data are available. Using the trained model, ionic conductivity values were predicted for several thousand candidate SPE formulations, allowing us to identify promising candidate SPEs. We also generated predictions for several different anions in poly(ethylene oxide) and poly(trimethylene carbonate), demonstrating the utility of our model in identifying descriptors for SPE ionic conductivity.

摘要

固态聚合物电解质(SPEs)有潜力通过提高安全性和实现更高的能量密度来改进锂离子电池。然而,与液体和固体陶瓷电解质相比,SPEs的离子电导率显著更低,这限制了它们在功能性电池中的应用。为了更快速地发现高离子电导率的SPEs,我们开发了一种化学信息机器学习模型,该模型能准确预测SPEs的离子电导率。该模型基于来自数百篇实验出版物的SPE离子电导率数据进行训练。我们的化学信息模型将描述温度激活过程的阿伦尼乌斯方程编码到一个先进的消息传递神经网络的读出层中,与未编码温度依赖性的模型相比,其准确性有显著提高。化学信息读出层与用于其他性质预测任务的深度学习兼容,在训练数据有限的情况下尤其有用。使用训练好的模型,预测了数千种候选SPE配方的离子电导率值,使我们能够识别出有前景的候选SPEs。我们还对聚环氧乙烷和聚碳酸三亚甲基酯中的几种不同阴离子进行了预测,证明了我们的模型在识别SPE离子电导率描述符方面的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54dd/9951296/cbe0df75f5de/oc2c01123_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验