Suppr超能文献

A mean-field game model for homogeneous flocking.

作者信息

Grover Piyush, Bakshi Kaivalya, Theodorou Evangelos A

机构信息

Mitsubishi Electric Research Labs, Cambridge, Massachusetts 02139, USA.

Aerospace Engineering, Georgia Tech, Atlanta, Georgia 30332, USA.

出版信息

Chaos. 2018 Jun;28(6):061103. doi: 10.1063/1.5036663.

Abstract

Empirically derived continuum models of collective behavior among large populations of dynamic agents are a subject of intense study in several fields, including biology, engineering, and finance. We formulate and study a mean-field game model whose behavior mimics an empirically derived nonlocal homogeneous flocking model for agents with gradient self-propulsion dynamics. The mean-field game framework provides a non-cooperative optimal control description of the behavior of a population of agents in a distributed setting. In this description, each agent's state is driven by optimally controlled dynamics that result in a Nash equilibrium between itself and the population. The optimal control is computed by minimizing a cost that depends only on its own state and a mean-field term. The agent distribution in phase space evolves under the optimal feedback control policy. We exploit the low-rank perturbative nature of the nonlocal term in the forward-backward system of equations governing the state and control distributions and provide a closed-loop linear stability analysis demonstrating that our model exhibits bifurcations similar to those found in the empirical model. The present work is a step towards developing a set of tools for systematic analysis, and eventually design, of collective behavior of non-cooperative dynamic agents via an inverse modeling approach.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验