Suppr超能文献

大群体系统中受生物启发的动态集体选择:一种稳健的平均场博弈视角

Bio-Inspired Dynamic Collective Choice in Large-Population Systems: A Robust Mean-Field Game Perspective.

作者信息

Li Man, Qin Jiahu, Wang Yaonan, Kang Yu

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 May;33(5):1914-1924. doi: 10.1109/TNNLS.2020.3027428. Epub 2022 May 2.

Abstract

Inspired by the collective decision making in biological systems, such as honeybee swarm searching for a new colony, we study a dynamic collective choice problem for large-population systems with the purpose of realizing certain advantageous features observed in biology. This problem focuses on the situation where a large number of heterogeneous agents subject to adversarial disturbances move from initial positions toward one of the destinations in a finite time while trying to remain close to the average trajectory of all agents. To overcome the complexity of this problem resulting from the large population and the heterogeneity of agents, and also to enforce some specific choices by individuals, we formulate the problem under consideration as a robust mean-field game with non-convex and non-smooth cost functions. Through Nash equivalence principle, we first deal with a single-player H tracking problem by taking the population behavior as a fixed trajectory, and then establish a mean-field system to estimate the population behavior. Optimal control strategies and worst disturbances, independent of the population size, are designed, which give a way to realize the collective decision-making behavior emerged in biological systems. We further prove that the designed strategies constitute ϵ -Nash equilibrium, where ϵ goes toward zero as the number of agents increases to infinity. The effectiveness of the proposed results are illustrated through two simulation examples.

摘要

受生物系统中集体决策的启发,例如蜜蜂群体寻找新蜂巢,我们研究了大群体系统的动态集体选择问题,目的是实现生物学中观察到的某些有利特征。这个问题关注的是大量受对抗性干扰的异构智能体在有限时间内从初始位置朝着其中一个目的地移动,同时试图保持接近所有智能体的平均轨迹的情况。为了克服由于群体规模大以及智能体异构性导致的这个问题的复杂性,并且为了强制个体做出一些特定选择,我们将所考虑的问题表述为具有非凸和非光滑成本函数的鲁棒平均场博弈。通过纳什等价原理,我们首先将群体行为视为固定轨迹来处理单人 H 跟踪问题,然后建立一个平均场系统来估计群体行为。设计了与群体规模无关的最优控制策略和最坏干扰,这为实现生物系统中出现的集体决策行为提供了一种方法。我们进一步证明所设计的策略构成 ε -纳什均衡,其中随着智能体数量增加到无穷大,ε 趋于零。通过两个仿真示例说明了所提结果的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验