Röhm André, Lüdge Kathy, Schneider Isabelle
Institut für Theoretische Physik, Technische Universität Berlin, 10623 Berlin, Germany.
Institut für Mathematik, Freie Universität Berlin, 14195 Berlin, Germany.
Chaos. 2018 Jun;28(6):063114. doi: 10.1063/1.5018262.
In the model system of two instantaneously and symmetrically coupled identical Stuart-Landau oscillators, we demonstrate that there exist stable solutions with symmetry-broken amplitude- and phase-locking. These states are characterized by a non-trivial fixed phase or amplitude relationship between both oscillators, while simultaneously maintaining perfectly harmonic oscillations of the same frequency. While some of the surrounding bifurcations have been previously described, we present the first detailed analytical and numerical description of these states and present analytically and numerically how they are embedded in the bifurcation structure of the system, arising both from the in-phase and the anti-phase solutions, as well as through a saddle-node bifurcation. The dependence of both the amplitude and the phase on parameters can be expressed explicitly with analytic formulas. As opposed to the previous reports, we find that these symmetry-broken states are stable, which can even be shown analytically. As an example of symmetry-breaking solutions in a simple and symmetric system, these states have potential applications as bistable states for switches in a wide array of coupled oscillatory systems.
在两个瞬间且对称耦合的相同斯图尔特 - 兰道振荡器的模型系统中,我们证明存在具有对称性破缺的振幅和相位锁定的稳定解。这些状态的特征是两个振荡器之间存在非平凡的固定相位或振幅关系,同时保持相同频率的完美谐波振荡。虽然之前已经描述了一些周围的分岔情况,但我们首次对这些状态进行了详细的解析和数值描述,并从解析和数值上展示了它们如何嵌入系统的分岔结构中,它们既产生于同相和反相解,也通过鞍结分岔产生。振幅和相位对参数的依赖性可以用解析公式明确表示。与之前的报告不同,我们发现这些对称性破缺状态是稳定的,甚至可以通过解析证明。作为简单对称系统中对称性破缺解的一个例子,这些状态在广泛的耦合振荡系统中作为开关的双稳态具有潜在应用。