Roos Aycke, Meinecke Stefan, Lüdge Kathy
Institute for Theoretical Physics, Technische Universiät Berlin, Hardenbergstr. 36, 10623, Berlin, Germany.
Sci Rep. 2021 Sep 17;11(1):18558. doi: 10.1038/s41598-021-97757-8.
We investigate the emission dynamics of mutually coupled nanolasers and predict ways to optimize their stability, i.e., maximize their locking range. We find that tuning the cavity lifetime to the same order of magnitude as the dephasing time of the microscopic polarization yields optimal operation conditions, which allow for wider tuning ranges than usually observed in conventional semiconductor lasers. The lasers are modeled by Maxwell-Bloch type class-C equations. For our analysis, we analytically determine the steady state solutions, analyze the symmetries of the system and numerically characterize the emission dynamics via the underlying bifurcation structure. The polarization lifetime is found to be a crucial parameter, which impacts the observed dynamics in the parameter space spanned by frequency detuning, coupling strength and coupling phase.
我们研究了相互耦合的纳米激光器的发射动力学,并预测了优化其稳定性的方法,即最大化其锁定范围。我们发现,将腔寿命调整到与微观极化的退相时间相同的数量级可产生最佳操作条件,这允许比传统半导体激光器中通常观察到的更宽的调谐范围。激光器由麦克斯韦-布洛赫C类方程建模。为了进行分析,我们解析地确定了稳态解,分析了系统的对称性,并通过潜在的分岔结构对发射动力学进行了数值表征。发现极化寿命是一个关键参数,它影响在由频率失谐、耦合强度和耦合相位所跨越的参数空间中观察到的动力学。