State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
Front Immunol. 2018 Jun 14;9:1297. doi: 10.3389/fimmu.2018.01297. eCollection 2018.
Activation of the DNA-dependent innate immune pathway plays a pivotal role in the host defense against poxvirus. Cyclic GMP-AMP synthase (cGAS) is a key cytosolic DNA sensor that produces the cyclic dinucleotide cGMP-AMP (cGAMP) upon activation, which triggers stimulator of interferon genes (STING), leading to type I Interferons (IFNs) production and an antiviral response. Ectromelia virus (ECTV) has emerged as a valuable model for investigating the host-Orthopoxvirus relationship. However, the role of cGas-Sting pathway in response to ECTV is not clearly understood. Here, we showed that murine cells (L929 and RAW264.7) mount type I IFN responses to ECTV that are dependent upon cGas, Sting, TANK binding kinase 1 (Tbk1), and interferon regulatory factor 3 (Irf3) signaling. Disruption of cGas or Sting expression in mouse macrophages blocked the type I IFN production and facilitated ECTV replication. Consistently, mice deficient in cGas or Sting exhibited lower type I IFN levels and higher viral loads, and are more susceptible to mousepox. Collectively, our study indicates that the cGas-Sting pathway is critical for sensing of ECTV infection, inducing the type I IFN production, and controlling ECTV replication.
DNA 依赖性先天免疫途径的激活在宿主防御痘病毒中起着关键作用。环鸟苷酸-腺苷酸合酶 (cGAS) 是一种关键的细胞质 DNA 传感器,在激活后产生环二核苷酸 cGMP-AMP (cGAMP),触发干扰素基因刺激物 (STING),导致 I 型干扰素 (IFNs) 的产生和抗病毒反应。细弱病毒 (ECTV) 已成为研究宿主正痘病毒关系的有价值模型。然而,cGas-Sting 途径在应对 ECTV 中的作用尚不清楚。在这里,我们表明,鼠细胞 (L929 和 RAW264.7) 对 ECTV 产生 I 型 IFN 反应,该反应依赖于 cGas、Sting、TANK 结合激酶 1 (Tbk1) 和干扰素调节因子 3 (Irf3) 信号。在小鼠巨噬细胞中敲除 cGas 或 Sting 表达会阻断 I 型 IFN 的产生并促进 ECTV 的复制。一致地,缺乏 cGas 或 Sting 的小鼠表现出较低的 I 型 IFN 水平和更高的病毒载量,并且更容易感染鼠痘。总之,我们的研究表明,cGas-Sting 途径对于 ECTV 感染的检测、诱导 I 型 IFN 的产生和控制 ECTV 的复制至关重要。
Proc Natl Acad Sci U S A. 2015-8-4
Int J Mol Sci. 2019-2-19
Narra J. 2022-12
J Immunol. 2017-11-1
Cell Mol Immunol. 2017-9-11
Nat Rev Immunol. 2017-6