Department of Pediatrics, Taipei City Hospital Zhongxing Branch, Taipei 103, Taiwan.
Departments of Pathology & Molecular Medicine and Biomedical & Molecular Sciences, and Division of Cancer Biology & Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada.
Exp Cell Res. 2018 Sep 15;370(2):312-321. doi: 10.1016/j.yexcr.2018.06.033. Epub 2018 Jun 28.
Peroxisome proliferator-activated receptor gamma (PPARγ) belongs to a family of ligand-activated nuclear receptors known to regulate many crucial physiological and pathological conditions. Indeed, altered PPARγ transcriptional activity contributes to metabolic syndromes (obesity and hyperglycemia associated with type 2 diabetes mellitus), stroke and neurodegenerative diseases. Various studies suggest that PPARγ agonists influence neuronal deficits in Alzheimer's Disease (AD) patients and rodent models of AD. Expression of amyloid-beta (Aβ), a neuropathological marker associated with the pathogenesis of AD neuronal impairment, is inversely correlated with the activation of PPARγ-dependent neuroprotective responses. Nevertheless, molecular mechanisms by which the effects of PPARγ agonists in AD remain to be clarified. Here, we explore the PPARγ signaling pathways and networks that protect against Aβ-induced endoplasmic reticulum (ER) stress (e.g., caspase 4, Bip, CHOP, ASK1 and ER calcium), cell death (e.g., viability and cytochrome c) and mitochondrial deficiency (e.g., maximal respiratory function, COX activity, and mitochondrial membrane potential) events in the human neural stem cells (hNSCs) treated with Aβ. Co-treatment with GW9662 (an antagonist of PPARγ) effectively blocked these protective effects by rosiglitazone, providing strong evidence that PPARγ-dependent signaling rescues hNSCs from Aβ-mediated toxicity. Together, our data suggest activation of PPARγ pathway might be critical to protecting against AD-related ER stress, ER disequilibrium and mitochondrial deficiency. These findings also improve our understanding of the role of PPARγ in hNSCs, and may aid in the development and implementation of new therapeutic strategies for the treatment of AD.
过氧化物酶体增殖物激活受体 γ (PPARγ) 属于配体激活的核受体家族,已知其调节许多重要的生理和病理条件。事实上,改变 PPARγ 的转录活性会导致代谢综合征(与 2 型糖尿病相关的肥胖和高血糖)、中风和神经退行性疾病。许多研究表明,PPARγ 激动剂会影响阿尔茨海默病(AD)患者和 AD 啮齿动物模型中的神经元缺陷。淀粉样蛋白-β (Aβ) 的表达,与 AD 神经元损伤发病机制相关的神经病理学标志物,与 PPARγ 依赖性神经保护反应的激活呈负相关。然而,PPARγ 激动剂在 AD 中的作用的分子机制仍有待阐明。在这里,我们探讨了保护人神经干细胞 (hNSCs) 免受 Aβ 诱导的内质网 (ER) 应激(例如半胱天冬酶 4、Bip、CHOP、ASK1 和 ER 钙)、细胞死亡(例如活力和细胞色素 c)和线粒体缺陷(例如最大呼吸功能、COX 活性和线粒体膜电位)的 PPARγ 信号通路和网络。用 Aβ 处理的 hNSCs 中,GW9662(PPARγ 拮抗剂)的共同处理有效地阻断了罗格列酮的这些保护作用,这为 PPARγ 依赖性信号转导可挽救 hNSCs 免受 Aβ 介导的毒性提供了有力证据。总之,我们的数据表明激活 PPARγ 通路可能对预防 AD 相关的 ER 应激、ER 失衡和线粒体缺陷至关重要。这些发现还提高了我们对 PPARγ 在 hNSCs 中的作用的理解,并可能有助于开发和实施治疗 AD 的新治疗策略。