Suppr超能文献

基于多源数据的PM细颗粒物时空估计与制图

[Space-Time Estimations and Mapping of PM Fine Particulates Based on Multi-source Data].

作者信息

Xiao Lu, Lang Yi-Chao, Xia Lang, Lou Zhao-Han, Sun Nan, Huang Li-Tong, George Christakos

机构信息

Institute of Islands and Coastal Ecosystems, Zhejiang University, Zhoushan 316021, China.

Beijing Agricultural Intelligent Equipment Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100089, China.

出版信息

Huan Jing Ke Xue. 2017 Dec 8;38(12):4913-4923. doi: 10.13227/j.hjkx.201705122.

Abstract

PM pollution in China has become an extreme environmental and social problem and has generated widespread public concern. We estimate ground-level PM from satellite-derived aerosol optical depth (AOD), topography data, meteorological data, and pollutant emissions using a new technique, Bayesian maximum entropy (BME) combined with geographically weighted regression (GWR), to evaluate the spatial and temporal characteristics of PM exposure in an eastern region of China in winter. The overall 10-fold cross-validation is 0.92, and the root mean squared prediction error (RMSE) is 8.32 μg·m. The mean prediction error (MPE) of the predicted monthly PM is -0.042 μg·m, the mean absolute prediction error (MAE) is 4.60 μg·m. Compared with the results of the Geographically Weighted Regression model-GWR (=0.71, RMSE=15.68 μg·m, MPE=-0.095 μg·m, MAE=11.14 μg·m), the prediction by the BME were greatly improved. In this location, the high PMconcentration area is mainly concentrated in North China, the Yangtze River Delta, and Sichuan Basin. The low concentration area is mainly concentrated in the south of China, including the Pearl River Delta and southwest of Yunnan. Temporally, there is migration trend from the coastal areas inland, and PM pollution is most serious in December 2015 and January 2016. It is relatively low in November 2015 and February 2016.

摘要

中国的细颗粒物污染已成为一个极端的环境和社会问题,并引起了公众的广泛关注。我们使用一种新技术——贝叶斯最大熵(BME)结合地理加权回归(GWR),从卫星衍生的气溶胶光学厚度(AOD)、地形数据、气象数据和污染物排放来估算地面细颗粒物,以评估中国东部地区冬季细颗粒物暴露的时空特征。整体10倍交叉验证值为0.92,均方根预测误差(RMSE)为8.32μg·m。预测的月度细颗粒物的平均预测误差(MPE)为-0.042μg·m,平均绝对预测误差(MAE)为4.60μg·m。与地理加权回归模型(GWR)的结果(=0.71,RMSE=15.68μg·m,MPE=-0.095μg·m,MAE=11.14μg·m)相比,BME的预测有了很大改进。在此区域,细颗粒物高浓度区主要集中在华北、长江三角洲和四川盆地。低浓度区主要集中在中国南方,包括珠江三角洲和云南西南部。从时间上看,有从沿海地区向内陆迁移的趋势,2015年12月和2016年1月的细颗粒物污染最为严重。2015年11月和2016年2月相对较低。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验