Suppr超能文献

基于极端梯度提升模型利用高密度地面气象观测资料构建中国虚拟 PM 观测网络。

Construction of a virtual PM observation network in China based on high-density surface meteorological observations using the Extreme Gradient Boosting model.

机构信息

State Key Laboratory of Severe Weather (LASW) and Key Laboratory of Atmospheric Chemistry (LAC), Chinese Academy of Meteorological Sciences, CMA, Beijing 100081, China; University of Chinese Academy of Sciences, Beijing 100049, China.

State Key Laboratory of Severe Weather (LASW) and Key Laboratory of Atmospheric Chemistry (LAC), Chinese Academy of Meteorological Sciences, CMA, Beijing 100081, China.

出版信息

Environ Int. 2020 Aug;141:105801. doi: 10.1016/j.envint.2020.105801. Epub 2020 May 29.

Abstract

With increasing public concerns on air pollution in China, there is a demand for long-term continuous PM datasets. However, it was not until the end of 2012 that China established a national PM observation network. Before that, satellite-retrieved aerosol optical depth (AOD) was frequently used as a primary predictor to estimate surface PM. Nevertheless, satellite-retrieved AOD often encounter incomplete daily coverage due to its sampling frequency and interferences from cloud, which greatly affect the representation of these AOD-based PM. Here, we constructed a virtual ground-based PM observation network at 1180 meteorological sites across China using the Extreme Gradient Boosting (XGBoost) model with high-density meteorological observations as major predictors. Cross-validation of the XGBoost model showed strong robustness and high accuracy in its estimation of the daily (monthly) PM across China in 2018, with R, root-mean-square error (RMSE) and mean absolute error values of 0.79 (0.92), 15.75 μg/m (6.75 μg/m) and 9.89 μg/m (4.53 μg/m), respectively. Meanwhile, we find that surface visibility plays the dominant role in terms of the relative importance of variables in the XGBoost model, accounting for 39.3% of the overall importance. We then use meteorological and PM data in the year 2017 to assess the predictive capability of the model. Results showed that the XGBoost model is capable to accurately hindcast historical PM at monthly (R = 0.80, RMSE = 14.75 μg/m), seasonal (R = 0.86, RMSE = 12.28 μg/m), and annual (R = 0.81, RMSE = 10.10 μg/m) mean levels. In general, the newly constructed virtual PM observation network based on high-density surface meteorological observations using the Extreme Gradient Boosting model shows great potential in reconstructing historical PM at ~1000 meteorological sites across China. It will be of benefit to filling gaps in AOD-based PM data, as well as to other environmental studies including epidemiology.

摘要

随着公众对中国空气污染问题的日益关注,人们对长期连续的 PM 数据集的需求也在不断增加。然而,直到 2012 年底,中国才建立了一个全国性的 PM 观测网络。在此之前,卫星反演的气溶胶光学厚度(AOD)经常被用作主要预测因子来估算地面 PM。然而,由于采样频率和云的干扰,卫星反演的 AOD 常常存在不完全的日覆盖,这极大地影响了这些基于 AOD 的 PM 的代表性。在这里,我们使用极端梯度提升(XGBoost)模型,利用高密度气象观测作为主要预测因子,在全国 1180 个气象站构建了一个虚拟的地面 PM 观测网络。XGBoost 模型的交叉验证结果表明,该模型在中国 2018 年的日(月)度 PM 估算中具有很强的稳健性和高精度,R、均方根误差(RMSE)和平均绝对误差值分别为 0.79(0.92)、15.75μg/m(6.75μg/m)和 9.89μg/m(4.53μg/m)。同时,我们发现地面能见度在 XGBoost 模型的变量相对重要性方面起着主导作用,占总体重要性的 39.3%。然后,我们使用 2017 年的气象和 PM 数据来评估模型的预测能力。结果表明,XGBoost 模型能够准确地回溯历史 PM 的月度(R=0.80,RMSE=14.75μg/m)、季节(R=0.86,RMSE=12.28μg/m)和年度(R=0.81,RMSE=10.10μg/m)平均水平。总的来说,基于高密度地面气象观测数据和极端梯度提升模型构建的新虚拟 PM 观测网络在中国约 1000 个气象站重建历史 PM 方面具有很大的潜力。这将有助于填补基于 AOD 的 PM 数据的空白,也有助于包括流行病学在内的其他环境研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验