Suppr超能文献

从CdSe/CdS纳米片的胶体半导体量子阱到单层MoS的近单位效率能量转移

Near-Unity Efficiency Energy Transfer from Colloidal Semiconductor Quantum Wells of CdSe/CdS Nanoplatelets to a Monolayer of MoS.

作者信息

Taghipour Nima, Hernandez Martinez Pedro Ludwig, Ozden Ayberk, Olutas Murat, Dede Didem, Gungor Kivanc, Erdem Onur, Perkgoz Nihan Kosku, Demir Hilmi Volkan

机构信息

Department of Electrical and Electronics Engineering, Department of Physics, UNAM-Institute of Materials Science and Nanotechnology , Bilkent University , Ankara 06800 , Turkey.

Luminous! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Materials Sciences, School of Materials Science and Nanotechnology , Nanyang Technological University , Singapore 639798 , Singapore.

出版信息

ACS Nano. 2018 Aug 28;12(8):8547-8554. doi: 10.1021/acsnano.8b04119. Epub 2018 Jul 13.

Abstract

A hybrid structure of the quasi-2D colloidal semiconductor quantum wells assembled with a single layer of 2D transition metal dichalcogenides offers the possibility of highly strong dipole-to-dipole coupling, which may enable extraordinary levels of efficiency in Förster resonance energy transfer (FRET). Here, we show ultrahigh-efficiency FRET from the ensemble thin films of CdSe/CdS nanoplatelets (NPLs) to a MoS monolayer. From time-resolved fluorescence spectroscopy, we observed the suppression of the photoluminescence of the NPLs corresponding to the total rate of energy transfer from ∼0.4 to 268 ns. Using an AlO separating layer between CdSe/CdS and MoS with thickness tuned from 5 to 1 nm, we found that FRET takes place 7- to 88-fold faster than the Auger recombination in CdSe-based NPLs. Our measurements reveal that the FRET rate scales down with d for the donor of CdSe/CdS NPLs and the acceptor of the MoS monolayer, d being the center-to-center distance between this FRET pair. A full electromagnetic model explains the behavior of this d system. This scaling arises from the delocalization of the dipole fields in the ensemble thin film of the NPLs and full distribution of the electric field across the layer of MoS. This d dependency results in an extraordinarily long Förster radius of ∼33 nm.

摘要

由单层二维过渡金属二硫属化物组装而成的准二维胶体半导体量子阱的混合结构提供了高度强偶极-偶极耦合的可能性,这可能使Förster共振能量转移(FRET)达到极高的效率水平。在此,我们展示了从CdSe/CdS纳米片(NPL)的集合薄膜到MoS单层的超高效率FRET。通过时间分辨荧光光谱,我们观察到NPL的光致发光被抑制,这对应于能量转移的总速率从约0.4纳秒到268纳秒。使用厚度从5纳米调谐到1纳米的AlO隔离层置于CdSe/CdS和MoS之间,我们发现FRET发生的速度比基于CdSe的NPL中的俄歇复合快7到88倍。我们的测量结果表明,对于CdSe/CdS NPL供体和MoS单层受体,FRET速率随d减小,d是该FRET对的中心到中心距离。一个完整的电磁模型解释了这个d系统的行为。这种缩放源于NPL集合薄膜中偶极场的离域以及电场在MoS层上的全部分布。这种对d的依赖性导致了约33纳米的极长Förster半径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验