Jeon Yukwon, Ji Yunseong, Cho Yong Il, Lee Chanmin, Park Dae-Hwan, Shul Yong-Gun
Department of Chemical and Biomolecular Engineering , Yonsei University , Yonsei-ro 50 , Seodaemun-gu, Seoul 03722 , Republic of Korea.
School of Chemistry , Saint Andrews University , KY16 9ST Fife , United Kingdom.
ACS Nano. 2018 Jul 24;12(7):6819-6829. doi: 10.1021/acsnano.8b02040. Epub 2018 Jul 5.
Well-designed electronic configurations and structural properties of electrocatalyst alter the activity, stability, and mass transport for enhanced catalytic reactions. We introduce a nanofibrous oxide-carbon composite by an in situ method of carbon nanofiber (CNF) growth by highly dispersed Ni nanoparticles that are exsoluted from a NiTiO surface. The nanofibrous feature has a 3D web structure with improved mass-transfer properties at the electrode. In addition, the design of the CNF/TiO support allows for complex properties for excellent stability and activity from the TiO oxide support and high electric conductivity through the connected CNF, respectively. Developed CNF/TiO-Pt nanofibrous catalyst displays exemplary oxygen-reduction reaction (ORR) activity with significant improvement of the electrochemical surface area. Moreover, exceptional resistance to carbon corrosion and Pt dissolution is proven by durability-test protocols based on the Department of Energy. These results are well-reflected to the single-cell tests with even-better performance at the kinetic zone compared to the commercial Pt/C under different operation conditions. CNF/TiO-Pt displays an enhanced active state due to the strong synergetic interactions, which decrease the Pt d-band vacancy by electron transfer from the oxide-carbon support. A distinct reaction mechanism is also proposed and eventually demonstrates a promising example of an ORR electrocatalyst design.
精心设计的电催化剂电子构型和结构性质会改变活性、稳定性和传质,以增强催化反应。我们通过一种原位方法引入了一种纳米纤维状氧化物 - 碳复合材料,即通过从NiTiO表面析出的高度分散的Ni纳米颗粒来生长碳纳米纤维(CNF)。纳米纤维特征具有三维网状结构,可改善电极处的传质性能。此外,CNF/TiO载体的设计分别允许从TiO氧化物载体获得优异的稳定性和活性以及通过连接的CNF实现高电导率的复杂性质。所开发的CNF/TiO - Pt纳米纤维催化剂表现出典型的氧还原反应(ORR)活性,电化学表面积有显著提高。此外,基于能源部的耐久性测试协议证明了其对碳腐蚀和Pt溶解具有出色的抗性。这些结果在单电池测试中得到了很好的体现,在不同操作条件下,与商业Pt/C相比,在动力学区域具有更好的性能。由于强烈的协同相互作用,CNF/TiO - Pt表现出增强的活性状态,这种相互作用通过从氧化物 - 碳载体的电子转移减少了Pt d带空位。还提出了一种独特的反应机制,最终展示了一个有前景的ORR电催化剂设计示例。