Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea.
Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), Daejeon 34129, Republic of Korea.
Sci Adv. 2023 Apr 28;9(17):eadf4863. doi: 10.1126/sciadv.adf4863.
To achieve a sustainable society, CO emissions must be reduced and efficiency of energy systems must be enhanced. The polymer electrolyte membrane fuel cell (PEMFC) has zero CO emissions and high effectiveness for various applications. A well-designed membrane electrolyte assembly (MEA) composed of electrode layers of effective materials and structure can alter the performance and durability of PEMFC. We demonstrate an efficient electrode deposition method through a well-designed carbon single web with a porous 3D web structure that can be commercially adopted. To achieve excellent electrochemical properties, active Pt nanoparticles are controlled by a nanoglue effect on a highly graphitized carbon surface. The developed MEA exhibits a notable maximum power density of 1082 mW/cm at 80°C, H/air, 50% RH, and 1.8 atm; low cathode loading of 0.1 mg/cm; and catalytic performance decays of only 23.18 and 13.42% under commercial-based durability protocols, respectively, thereby achieving all desirables for commercial applications.
为实现可持续社会,必须减少 CO 排放并提高能源系统的效率。聚合物电解质膜燃料电池 (PEMFC) 零 CO 排放,适用于各种应用,效率高。由有效材料和结构的电极层组成的精心设计的膜电极组件 (MEA) 可以改变 PEMFC 的性能和耐久性。我们通过具有商业采用潜力的多孔 3D 网结构的精心设计的碳纤维单丝展示了一种高效的电极沉积方法。为了获得优异的电化学性能,活性 Pt 纳米颗粒通过在高度石墨化碳表面上的纳米胶效应得到控制。开发的 MEA 在 80°C、H/空气、50% RH 和 1.8 大气压下表现出显著的最大功率密度 1082 mW/cm,阴极负载低至 0.1 mg/cm,在商业耐久性协议下,催化性能衰减分别仅为 23.18%和 13.42%,从而实现了商业应用的所有理想特性。