Dogan Didem C, Choi Jiye, Seo Min Ho, Lee Eunjik, Jung Namgee, Yim Sung-Dae, Yang Tae-Hyun, Park Gu-Gon
Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), 152, Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea.
University of Science and Technology (UST), 217, Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea.
Nanomaterials (Basel). 2021 Mar 24;11(4):829. doi: 10.3390/nano11040829.
In this study, we address the catalytic performance of variously sized Pt nanoparticles (NPs) (from 1.7 to 2.9 nm) supported on magnéli phase titanium oxide (MPTO, TiO) along with commercial solid type carbon (VXC-72R) for oxygen reduction reaction (ORR). Key idea is to utilize a robust and electrically conductive MPTO as a support material so that we employed it to improve the catalytic activity and durability through the strong metal-support interaction (SMSI). Furthermore, we increase the specific surface area of MPTO up to 61.6 m g to enhance the SMSI effect between Pt NP and MPTO. After the deposition of a range of Pt NPs on the support materials, we investigate the ORR activity and durability using a rotating disk electrode (RDE) technique in acid media. As a result of accelerated stress test (AST) for 30k cycles, regardless of the Pt particle size, we confirmed that Pt/MPTO samples show a lower electrochemical surface area (ECSA) loss (<20%) than that of Pt/C (~40%). That is explained by the increased dissolution potential and binding energy of Pt on MPTO against to carbon, which is supported by the density functional theory (DFT) calculations. Based on these results, we found that conductive metal oxides could be an alternative as a support material for the long-term fuel cell operation.
在本研究中,我们研究了负载在马涅利相氧化钛(MPTO,TiO)以及商用固体型碳(VXC - 72R)上的各种尺寸的铂纳米颗粒(NPs)(1.7至2.9纳米)对氧还原反应(ORR)的催化性能。关键思路是利用坚固且导电的MPTO作为载体材料,以便我们通过强金属 - 载体相互作用(SMSI)来提高催化活性和耐久性。此外,我们将MPTO的比表面积提高到61.6 m²/g,以增强铂纳米颗粒与MPTO之间的SMSI效应。在将一系列铂纳米颗粒沉积在载体材料上之后,我们在酸性介质中使用旋转圆盘电极(RDE)技术研究了ORR活性和耐久性。经过30k次循环的加速应力测试(AST),无论铂颗粒大小如何,我们证实铂/MPTO样品的电化学表面积(ECSA)损失(<20%)低于铂/碳(~40%)。这可以通过铂在MPTO上相对于碳的溶解电位和结合能增加来解释,这得到了密度泛函理论(DFT)计算的支持。基于这些结果,我们发现导电金属氧化物可以作为长期燃料电池运行的载体材料替代品。