Suppr超能文献

CGGBP1功能丧失后全基因组范围内CpG和非CpG甲基化的动态双峰变化。

Dynamic bimodal changes in CpG and non-CpG methylation genome-wide upon CGGBP1 loss-of-function.

作者信息

Patel Divyesh, Patel Manthan, Westermark Bengt, Singh Umashankar

机构信息

HoMeCell Laboratory, Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India.

Department of Immunology, Genetics and Pathology, and Science for Life Laboratory, Uppsala University, 75185, Uppsala, Sweden.

出版信息

BMC Res Notes. 2018 Jul 2;11(1):419. doi: 10.1186/s13104-018-3516-1.

Abstract

OBJECTIVES

Although CpG methylation is well studied, mechanisms of non-CpG methylation in mammals remains elusive. Studying proteins with non-CpG cytosine methylation-sensitive DNA-binding, such as human CGGBP1, can unveil cytosine methylation regulatory mechanisms. Here we have resequenced a published genome-wide bisulfite sequencing library and analyzed it at base level resolution. CpG, CHG and CHH (where H is any nucleotide other than G) methylation states in non-targeting or CGGBP1-targeting shmiR lentivirus-transduced cells have been analyzed to identify how CGGBP1 regulates CpG and non-CpG methylation.

RESULTS

We report that CGGBP1 acts as a dynamic bimodal balancer of methylation. Both gain and loss of methylation observed upon CGGBP1 depletion were spatially overlapping at annotated functional regions and not identifiable with any sequence motifs but clearly associated with GC-skew. CGGBP1 depletion caused clustered methylation changes in cis, upstream of R-loop forming promoters. This was complemented by clustered occurrences of methylation changes in proximity of transcription start sites of known cytosine methylation regulatory genes, altered expression of which can regulate cytosine methylation in trans. Despite low coverage, our data provide reliable estimates of the spectrum of methylation changes regulated by CGGBP1 in all cytosine contexts genome-wide through a combination of cis and trans-acting mechanisms.

摘要

目的

尽管对CpG甲基化已有深入研究,但哺乳动物中非CpG甲基化的机制仍不清楚。研究具有非CpG胞嘧啶甲基化敏感DNA结合能力的蛋白质,如人类CGGBP1,能够揭示胞嘧啶甲基化调控机制。在此,我们对已发表的全基因组亚硫酸氢盐测序文库进行了重测序,并在碱基水平分辨率上进行了分析。分析了非靶向或CGGBP1靶向的shmiR慢病毒转导细胞中的CpG、CHG和CHH(其中H为除G以外的任何核苷酸)甲基化状态,以确定CGGBP1如何调节CpG和非CpG甲基化。

结果

我们报告称,CGGBP1作为甲基化的动态双峰平衡器。在CGGBP1缺失时观察到的甲基化增加和减少在注释的功能区域在空间上重叠,无法与任何序列基序相关联,但与GC偏斜明显相关。CGGBP1缺失导致在R环形成启动子上游的顺式簇状甲基化变化。已知胞嘧啶甲基化调控基因转录起始位点附近甲基化变化的簇状出现对此起到了补充作用,这些基因表达的改变可在反式中调节胞嘧啶甲基化。尽管覆盖度较低,但我们的数据通过顺式和反式作用机制的组合,提供了全基因组范围内CGGBP1调节的所有胞嘧啶背景下甲基化变化谱的可靠估计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c1e/6027561/e80ddaf41704/13104_2018_3516_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验