Institute of Experimental Gene Therapy and Cancer Research, Biomedical Research Center (BMFZ), Rostock University Medical School, Rostock, Germany.
Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander University of Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
Semin Cancer Biol. 2018 Dec;53:90-109. doi: 10.1016/j.semcancer.2018.06.006. Epub 2018 Jun 30.
Metastasis is one of the most challenging issues in cancer patient management, and effective therapies to specifically target disease progression are missing, emphasizing the urgent need for developing novel anti-metastatic therapeutics. Cancer stem cells (CSCs) gained fast attention as a minor population of highly malignant cells within liquid and solid tumors that are responsible for tumor onset, self-renewal, resistance to radio- and chemotherapies, and evasion of immune surveillance accelerating recurrence and metastasis. Recent progress in the identification of their phenotypic and molecular characteristics and interactions with the tumor microenvironment provides great potential for the development of CSC-based targeted therapies and radical improvement in metastasis prevention and cancer patient prognosis. Here, we report on newly uncovered signaling mechanisms controlling CSC's aggressiveness and treatment resistance, and CSC-specific agents and molecular therapeutics, some of which are currently under investigation in clinical trials, gearing towards decisive functional CSC intrinsic or surface markers. One special research focus rests upon subverted regulatory pathways such as insulin-like growth factor 1 receptor signaling and its interactors in metastasis-initiating cell populations directly related to the gain of stem cell- and EMT-associated properties, as well as key components of the E2F transcription factor network regulating metastatic progression, microenvironmental changes, and chemoresistance. In addition, the study provides insight into systems biology tools to establish complex molecular relationships behind the emergence of aggressive phenotypes from high-throughput data that rely on network-based analysis and their use to investigate immune escape mechanisms or predict clinical outcome-relevant CSC receptor signaling signatures. We further propose that customized vector technologies could drastically enhance systemic drug delivery to target sites, and summarize recent progress and remaining challenges. This review integrates available knowledge on CSC biology, computational modeling approaches, molecular targeting strategies, and delivery techniques to envision future clinical therapies designed to conquer metastasis-initiating cells.
转移是癌症患者管理中最具挑战性的问题之一,缺乏专门针对疾病进展的有效治疗方法,这强调了开发新型抗转移治疗方法的迫切需要。癌症干细胞 (CSC) 作为液体和实体肿瘤中高度恶性细胞的一小部分,由于能够引起肿瘤发生、自我更新、对放化疗的耐药性以及逃避免疫监视,从而加速复发和转移,因此受到了广泛关注。最近在鉴定其表型和分子特征以及与肿瘤微环境相互作用方面取得的进展为基于 CSC 的靶向治疗提供了巨大潜力,有望从根本上改善转移预防和癌症患者的预后。在这里,我们报告了新发现的控制 CSC 侵袭性和治疗耐药性的信号转导机制,以及针对 CSC 的特异性药物和分子治疗方法,其中一些目前正在临床试验中进行研究,旨在确定功能明确的 CSC 内在或表面标志物。一个特殊的研究重点是失调的调节途径,如胰岛素样生长因子 1 受体信号及其在与获得干细胞和 EMT 相关特性直接相关的转移起始细胞群中的相互作用,以及调节转移进展、微环境变化和化学抗性的 E2F 转录因子网络的关键组成部分。此外,该研究还深入了解了系统生物学工具,这些工具可根据基于网络的分析从高通量数据中建立侵袭性表型背后的复杂分子关系,并利用这些工具来研究免疫逃逸机制或预测与临床结果相关的 CSC 受体信号特征。我们进一步提出,定制载体技术可以极大地增强靶向部位的系统药物输送,并总结了最新进展和剩余挑战。本综述整合了关于 CSC 生物学、计算建模方法、分子靶向策略和输送技术的现有知识,旨在设想未来旨在攻克起始转移细胞的临床治疗方法。