Suppr超能文献

重新定义动力学性肺过度充气:新范式的时代。

Re-defining kinetic lung overload: Time for new paradigms.

机构信息

14th Military Medical University, Xi'an, China.

14th Military Medical University, Xi'an, China; Hannover Medical School, Hannover, Germany.

出版信息

Toxicol Lett. 2018 Oct 1;295:212-219. doi: 10.1016/j.toxlet.2018.06.1222. Epub 2018 Jun 30.

Abstract

This paper compares two previously published 13-week inhalation studies with poorly soluble, low-toxicity particles (PSLTs) in rats to identify the unifying key metric of kinetic lung overload. The PSLTs compared are Multi-Walled Carbon Nanotubes (MWCNT) and black iron oxide (FeO, magnetite). Their material densities and related displacement volumes differ approximately 30-fold. This offers an opportunity for analyzing the impact of the PSLT-density of agglomerates on endpoints currently conceived to be involved in kinetic lung overload. Corpuscular volumes and counts of cells retrieved by bronchoalveolar lavage (BAL) are analyzed to interrelate modeled cumulative lung burdens of solid aerosol to predict the no observed adverse effect concentration (NOAEC) and range of conditions causing various degrees of kinetic lung overload up to and beyond the maximum tolerated cumulative dose (MTD). Both descriptors are a reflection of accumulated lung burdens and, by design, bracket repeated exposure inhalation studies with PSLTs. This comparative analysis of high- and low-density PSLTs reveals that the leading adverse outcome pathway (AOP) is caused by a markedly increased pool-size of BAL-cells rather than any increased corpuscular volume of cells. The overload-related increased pool-size of BAL-cells is shown to be the dependent variable for the prorated increased elimination half-time of PSLTs. This interrelationship was used to predict the exposure concentrations for attaining a NOAEC and MTD of guideline-based repeated exposure inhalation studies with PSLTs. Earlier approaches suggesting a loss of the migratory capabilities of particle-laden, enlarged alveolar macrophages to be the cause for any increased elimination half-time of PSLTs could not be confirmed. In summary, kinetic modeling provides a versatile means to predict the cornerstones of repeated inhalation studies with PSLTs on rats. Such possibilities leverage adjustment of studies from different sources to identical degrees of kinetic overload. They also facilitate and foster AOP-facilitated read-across approaches. The course taken enables risk assessors to better differentiate lung pathologies caused by generic lung overload and substance-specific pathologies.

摘要

本文比较了两项此前发表的大鼠吸入研究,这些研究使用的是具有低毒性的难溶性颗粒(PSLT),目的是确定动力学性肺过载的统一关键度量标准。所比较的 PSLT 是多壁碳纳米管(MWCNT)和黑色氧化铁(FeO,磁铁矿)。它们的材料密度和相关的位移体积相差约 30 倍。这为分析 PSLT 团聚物密度对目前被认为与动力学性肺过载有关的终点的影响提供了机会。通过分析支气管肺泡灌洗(BAL)中回收的细胞的颗粒体积和计数,将固体气溶胶的累积肺负荷与模型相关联,以预测无观察到不良效应浓度(NOAEC)和导致各种程度动力学性肺过载的范围,直至超过最大耐受累积剂量(MTD)。这两个描述符都反映了累积的肺负荷,并且通过设计,重复了 PSLT 的吸入研究。这项对高密度和低密度 PSLT 的比较分析表明,主要的不良结局途径(AOP)是由 BAL 细胞的池体积显著增加引起的,而不是细胞的任何颗粒体积增加。研究表明,与过载相关的 BAL 细胞池大小增加是 PSLT 比例增加的消除半衰期的因变量。这种相互关系被用于预测达到基于指南的 PSLT 重复暴露吸入研究的无观察到不良效应浓度(NOAEC)和最大耐受累积剂量(MTD)的暴露浓度。此前的方法表明,载有颗粒的肺泡巨噬细胞的迁移能力丧失是导致 PSLT 消除半衰期增加的原因,但这一说法无法得到证实。总之,动力学模型为预测大鼠 PSLT 重复吸入研究的基石提供了一种通用的方法。这些可能性利用了来自不同来源的研究,使其达到相同程度的动力学过载。它们还促进了 AOP 促进的读通方法。所采取的方法使风险评估人员能够更好地区分由普通肺过载和物质特异性病理学引起的肺病理学。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验