Suppr超能文献

难溶性颗粒:为 DNEL 估计寻找纳米颗粒和细颗粒的统一分母。

Poorly soluble particulates: searching for a unifying denominator of nanoparticles and fine particles for DNEL estimation.

机构信息

Department of Inhalation Toxicology, Institute of Toxicology, Bayer Schering Pharmaceuticals, Building no. 514, 42096 Wuppertal, Germany.

出版信息

Toxicology. 2011 Jan 11;279(1-3):176-88. doi: 10.1016/j.tox.2010.10.009. Epub 2010 Nov 11.

Abstract

Under the new European chemicals regulation, REACH (Registration, Evaluation, Authorization and Restriction of Chemicals) a Derived No-Effect Level (DNEL), i.e., the level of exposure above which humans should not be exposed, is defined. The focus of this paper is to develop a weight-of-evidence-based DNEL-approach for inhaled poorly soluble particles. Despite the common mode of action of inhaled insoluble, spherical particulate matter (PM), a unifying, most appropriate metric conferring pulmonary biopersistence and toxicity has yet not been demonstrated. Nonetheless, there is compelling evidence from repeated rat inhalation exposure studies suggesting that the particle displacement volume is the most prominent unifying denominator linking the pulmonary retained dose with toxicity. Procedures were developed to analyze and model the pulmonary toxicokinetics from short-term to long-term exposure. Six different types of poorly soluble nano- to submicron PMs were compared: ultrafine and pigmentary TiO₂, synthetic iron oxide (Fe₃O₄, magnetite), two aluminum oxyhydroxides (AlOOH, Boehmite) with primary isometric particles approximately of either 10 or 40 nm, and MWCNT. The specific agglomerate densities of these materials ranged from 0.1 g/cm³ (MWCNT) to 5 g/cm³ (Fe₃O₄). Along with all PM, due to their long retention half-times and associated biopersistence in the lung, even short-term inhalation studies may require postexposure periods of at least 3 months to reveal PM-specific dispositional and toxicological characteristics. This analysis provides strong evidence that pulmonary toxicity (sustained inflammation) is dependent on the volume-based cumulative lung exposure dose. Lung toxicity, evidenced by PMN in BAL occurred at lung doses exceeding 10-times the overload threshold. Furthermore, the conclusion is supported that repeated inhalation studies on rats should utilize an experimental window of cumulative volume loads of respirable PM in the range of 1 μl/lung (no-adverse-effect range); however, not exceeding ≈10 μl/lung that would lead to retention half-times increasing 1 year. This can be targeted best by computational toxicology, i.e., the modeling of particle deposition and lung retention biokinetics during the exposure and recovery periods. Inhalation studies exceeding that threshold volume may lead to meaningless findings difficult to extrapolate to any real-life scenario. In summary, this analysis supports a volume-based generic mass concentration of 0.5 μl PM(respirable)/m³ x agglomerate density, independent on nano- or submicron-sized properties, as a generic no-adverse effect level in both rats and humans.

摘要

在新的欧洲化学品法规 REACH(注册、评估、授权和限制化学品)下,定义了一个衍生的无效应水平(DNEL),即人类不应暴露于其上的暴露水平。本文的重点是为吸入性难溶性颗粒开发一种基于证据权重的 DNEL 方法。尽管吸入性不溶性、球形颗粒物(PM)的作用模式相同,但尚未证明有一种统一的、最合适的度量标准可以赋予肺部生物持久性和毒性。尽管如此,来自重复大鼠吸入暴露研究的强有力证据表明,颗粒位移体积是将肺部保留剂量与毒性联系起来的最突出的统一分母。已经开发出程序来分析和建模从短期到长期暴露的肺部毒代动力学。比较了六种不同类型的难溶性纳米到亚微米 PM:超细微粒和颜料 TiO₂、合成氧化铁(Fe₃O₄,磁铁矿)、两种铝水合氧化物(AlOOH,Boehmite),其初级等轴颗粒的直径约为 10 或 40nm,以及 MWCNT。这些材料的特定团聚密度范围从 0.1 g/cm³(MWCNT)到 5 g/cm³(Fe₃O₄)。由于所有 PM 的保留半衰期长且在肺部具有生物持久性,即使是短期吸入研究也可能需要至少 3 个月的暴露后时间才能揭示 PM 特有的处置和毒理学特征。这种分析提供了强有力的证据,表明肺部毒性(持续炎症)取决于基于体积的累积肺暴露剂量。PMN 在 BAL 中出现表明肺毒性发生在肺剂量超过 10 倍过载阈值时。此外,还得出结论,应在大鼠重复吸入研究中使用可吸入 PM 的累积体积负荷实验窗口,范围为 1 μl/肺(无不良效应范围);然而,不应超过 ≈10 μl/肺,这将导致保留半衰期增加 1 年。这可以通过计算毒理学来最佳实现,即暴露和恢复期颗粒沉积和肺部保留生物动力学的建模。超过该阈值体积的吸入研究可能会导致难以外推到任何现实场景的无意义发现。总之,该分析支持基于体积的通用质量浓度为 0.5 μl PM(可吸入)/m³ x 团聚密度,与纳米或亚微米尺寸的特性无关,作为大鼠和人类的通用无不良效应水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验