From NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, N-7491 Trondheim, Norway.
the Faculty of Chemistry, Biotechnology and Food Science, NMBU Norwegian University of Life Sciences, N-1432 Ås, Norway, and.
J Biol Chem. 2018 Aug 24;293(34):13006-13015. doi: 10.1074/jbc.RA118.004269. Epub 2018 Jul 2.
Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that catalyze the oxidative cleavage of polysaccharides such as cellulose and chitin, a feature that makes them key tools in industrial biomass conversion processes. The catalytic domains of a considerable fraction of LPMOs and other carbohydrate-active enzymes (CAZymes) are tethered to carbohydrate-binding modules (CBMs) by flexible linkers. These linkers preclude X-ray crystallographic studies, and the functional implications of these modular assemblies remain partly unknown. Here, we used NMR spectroscopy to characterize structural and dynamic features of full-length modular LPMO10C from We observed that the linker is disordered and extended, creating distance between the CBM and the catalytic domain and allowing these domains to move independently of each other. Functional studies with cellulose nanofibrils revealed that most of the substrate-binding affinity of full-length LPMO10C resides in the CBM. Comparison of the catalytic performance of full-length LPMO10C and its isolated catalytic domain revealed that the CBM is beneficial for LPMO activity at lower substrate concentrations and promotes localized and repeated oxidation of the substrate. Taken together, these results provide a mechanistic basis for understanding the interplay between catalytic domains linked to CBMs in LPMOs and CAZymes in general.
溶细胞多糖单加氧酶(LPMOs)是一类依赖铜的酶,能够催化多糖(如纤维素和几丁质)的氧化断裂,这一特性使它们成为工业生物质转化过程中的关键工具。相当一部分 LPMO 和其他碳水化合物活性酶(CAZymes)的催化结构域通过柔性接头与碳水化合物结合模块(CBMs)连接。这些接头阻碍了 X 射线晶体学研究,这些模块化组装的功能意义在一定程度上仍然未知。在这里,我们使用 NMR 光谱学来表征全长模块化 LPMO10C 的结构和动态特征。我们观察到接头是无定形和伸展的,在 CBM 和催化结构域之间创造了距离,使这些结构域能够彼此独立地移动。使用纤维素纳米纤维进行的功能研究表明,全长 LPMO10C 的大部分底物结合亲和力位于 CBM 中。全长 LPMO10C 及其分离的催化结构域的催化性能比较表明,CBM 有利于较低底物浓度下的 LPMO 活性,并促进底物的局部和重复氧化。总之,这些结果为理解 LPMO 和 CAZymes 中与 CBM 连接的催化结构域之间的相互作用提供了一个机制基础。