Suppr超能文献

一个模块化的溶菌多糖单加氧酶的碳水化合物结合模块和连接子促进局部纤维素氧化。

The carbohydrate-binding module and linker of a modular lytic polysaccharide monooxygenase promote localized cellulose oxidation.

机构信息

From NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, N-7491 Trondheim, Norway.

the Faculty of Chemistry, Biotechnology and Food Science, NMBU Norwegian University of Life Sciences, N-1432 Ås, Norway, and.

出版信息

J Biol Chem. 2018 Aug 24;293(34):13006-13015. doi: 10.1074/jbc.RA118.004269. Epub 2018 Jul 2.

Abstract

Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that catalyze the oxidative cleavage of polysaccharides such as cellulose and chitin, a feature that makes them key tools in industrial biomass conversion processes. The catalytic domains of a considerable fraction of LPMOs and other carbohydrate-active enzymes (CAZymes) are tethered to carbohydrate-binding modules (CBMs) by flexible linkers. These linkers preclude X-ray crystallographic studies, and the functional implications of these modular assemblies remain partly unknown. Here, we used NMR spectroscopy to characterize structural and dynamic features of full-length modular LPMO10C from We observed that the linker is disordered and extended, creating distance between the CBM and the catalytic domain and allowing these domains to move independently of each other. Functional studies with cellulose nanofibrils revealed that most of the substrate-binding affinity of full-length LPMO10C resides in the CBM. Comparison of the catalytic performance of full-length LPMO10C and its isolated catalytic domain revealed that the CBM is beneficial for LPMO activity at lower substrate concentrations and promotes localized and repeated oxidation of the substrate. Taken together, these results provide a mechanistic basis for understanding the interplay between catalytic domains linked to CBMs in LPMOs and CAZymes in general.

摘要

溶细胞多糖单加氧酶(LPMOs)是一类依赖铜的酶,能够催化多糖(如纤维素和几丁质)的氧化断裂,这一特性使它们成为工业生物质转化过程中的关键工具。相当一部分 LPMO 和其他碳水化合物活性酶(CAZymes)的催化结构域通过柔性接头与碳水化合物结合模块(CBMs)连接。这些接头阻碍了 X 射线晶体学研究,这些模块化组装的功能意义在一定程度上仍然未知。在这里,我们使用 NMR 光谱学来表征全长模块化 LPMO10C 的结构和动态特征。我们观察到接头是无定形和伸展的,在 CBM 和催化结构域之间创造了距离,使这些结构域能够彼此独立地移动。使用纤维素纳米纤维进行的功能研究表明,全长 LPMO10C 的大部分底物结合亲和力位于 CBM 中。全长 LPMO10C 及其分离的催化结构域的催化性能比较表明,CBM 有利于较低底物浓度下的 LPMO 活性,并促进底物的局部和重复氧化。总之,这些结果为理解 LPMO 和 CAZymes 中与 CBM 连接的催化结构域之间的相互作用提供了一个机制基础。

相似文献

1
The carbohydrate-binding module and linker of a modular lytic polysaccharide monooxygenase promote localized cellulose oxidation.
J Biol Chem. 2018 Aug 24;293(34):13006-13015. doi: 10.1074/jbc.RA118.004269. Epub 2018 Jul 2.
2
The Linker Region Promotes Activity and Binding Efficiency of Modular LPMO towards Polymeric Substrate.
Microbiol Spectr. 2022 Feb 23;10(1):e0269721. doi: 10.1128/spectrum.02697-21. Epub 2022 Jan 26.
3
The effect of linker conformation on performance and stability of a two-domain lytic polysaccharide monooxygenase.
J Biol Chem. 2023 Nov;299(11):105262. doi: 10.1016/j.jbc.2023.105262. Epub 2023 Sep 19.
4
Engineering chitinolytic activity into a cellulose-active lytic polysaccharide monooxygenase provides insights into substrate specificity.
J Biol Chem. 2019 Dec 13;294(50):19349-19364. doi: 10.1074/jbc.RA119.010056. Epub 2019 Oct 27.
5
Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases.
Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8446-51. doi: 10.1073/pnas.1402771111. Epub 2014 May 27.
9
Functional analysis of a novel lytic polysaccharide monooxygenase from Streptomyces griseus on cellulose and chitin.
Int J Biol Macromol. 2020 Dec 1;164:2085-2091. doi: 10.1016/j.ijbiomac.2020.08.015. Epub 2020 Aug 4.
10
Comparative study of two chitin-active and two cellulose-active AA10-type lytic polysaccharide monooxygenases.
Biochemistry. 2014 Mar 18;53(10):1647-56. doi: 10.1021/bi5000433. Epub 2014 Mar 5.

引用本文的文献

1
Adaptive traits for chitin utilization in the saprotrophic aquatic chytrid fungus .
Proc Biol Sci. 2025 May;292(2047):20250337. doi: 10.1098/rspb.2025.0337. Epub 2025 May 28.
2
Design of Plastic Binding Lytic Polysaccharide Monooxygenases via Modular Engineering.
Chem Bio Eng. 2024 Sep 27;1(10):863-875. doi: 10.1021/cbe.4c00125. eCollection 2024 Nov 28.
3
LPMO-Catalyzed Oxidation of Cellulosic Fibers with Controlled Addition of a Reductant and HO.
ACS Sustain Chem Eng. 2024 Dec 30;13(1):220-231. doi: 10.1021/acssuschemeng.4c06802. eCollection 2025 Jan 13.
6
The impact of the carbohydrate-binding module on how a lytic polysaccharide monooxygenase modifies cellulose fibers.
Biotechnol Biofuels Bioprod. 2024 Aug 24;17(1):118. doi: 10.1186/s13068-024-02564-8.
8
Beyond the Surface: A Methodological Exploration of Enzyme Impact along the Cellulose Fiber Cross-Section.
Biomacromolecules. 2024 May 13;25(5):3076-3086. doi: 10.1021/acs.biomac.4c00152. Epub 2024 Apr 18.
9
The disordered C-terminal tail of fungal LPMOs from phytopathogens mediates protein dimerization and impacts plant penetration.
Proc Natl Acad Sci U S A. 2024 Mar 26;121(13):e2319998121. doi: 10.1073/pnas.2319998121. Epub 2024 Mar 21.
10
Enhancing enzymatic saccharification yields of cellulose at high solid loadings by combining different LPMO activities.
Biotechnol Biofuels Bioprod. 2024 Mar 9;17(1):39. doi: 10.1186/s13068-024-02485-6.

本文引用的文献

1
NMR analysis of substrate binding to a two-domain chitinase: Comparison between soluble and insoluble chitins.
Carbohydr Res. 2018 Mar 22;458-459:52-59. doi: 10.1016/j.carres.2018.02.004. Epub 2018 Feb 8.
2
Distinct roles of N- and O-glycans in cellulase activity and stability.
Proc Natl Acad Sci U S A. 2017 Dec 26;114(52):13667-13672. doi: 10.1073/pnas.1714249114. Epub 2017 Dec 11.
3
Structural determinants of bacterial lytic polysaccharide monooxygenase functionality.
J Biol Chem. 2018 Jan 26;293(4):1397-1412. doi: 10.1074/jbc.M117.817130. Epub 2017 Dec 8.
4
Oxidative cleavage of polysaccharides by monocopper enzymes depends on HO.
Nat Chem Biol. 2017 Oct;13(10):1123-1128. doi: 10.1038/nchembio.2470. Epub 2017 Aug 28.
7
A novel expression system for lytic polysaccharide monooxygenases.
Carbohydr Res. 2017 Aug 7;448:212-219. doi: 10.1016/j.carres.2017.02.003. Epub 2017 Feb 14.
8
Interactions of a fungal lytic polysaccharide monooxygenase with β-glucan substrates and cellobiose dehydrogenase.
Proc Natl Acad Sci U S A. 2016 May 24;113(21):5922-7. doi: 10.1073/pnas.1602566113. Epub 2016 May 5.
9
Discovery and industrial applications of lytic polysaccharide mono-oxygenases.
Biochem Soc Trans. 2016 Feb;44(1):143-9. doi: 10.1042/BST20150204.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验