Suppr超能文献

一种具有半纤维素去除和 LPMO 活性的模块化酶可提高软木中纤维素的可及性。

A modular enzyme with combined hemicellulose-removing and LPMO activity increases cellulose accessibility in softwood.

作者信息

Forsberg Zarah, Tuveng Tina R, Eijsink Vincent G H

机构信息

Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.

出版信息

FEBS J. 2025 Jan;292(1):75-93. doi: 10.1111/febs.17250. Epub 2024 Aug 27.

Abstract

Because of the association with other complex polysaccharides, extracting and utilizing cellulose from lignocellulosic materials requires the combined action of a broad range of carbohydrate-active enzymes, including multiple glycoside hydrolases (GHs) and lytic polysaccharide monooxygenases (LPMOs). The interplay between these enzymes and the way in which Nature orchestrates their co-existence and combined action are topics of great scientific and industrial interest. To gain more insight into these issues, we have studied the lignocellulose-degrading abilities of an enzyme from Caldibacillus cellulovorans (CcLPMO10-Man5), comprising an LPMO domain, a GH5 mannanase domain and two family 3 carbohydrate-binding modules (CBM3). Using a natural softwood substrate, we show that this enzyme promotes cellulase activity, i.e., saccharification of cellulose, both by removing mannan covering the cellulose and by oxidatively breaking up the cellulose structure. Synergy with CcLPMO10-Man5 was most pronounced for two tested cellobiohydrolases, whereas effects were smaller for a tested endoglucanase, which is in line with the notion that cellobiohydrolases and LPMOs attack the same crystalline regions of the cellulose, whereas endoglucanases attack semi-crystalline and amorphous regions. Importantly, the LPMO domain of CcLPMO10-Man5 is incapable of accessing the softwood cellulose in absence of the mannanase domain. Considering that LPMOs not bound to a substrate are sensitive to autocatalytic inactivation, this intramolecular synergy provides a perfect rationale for the evolution of modular enzymes such as CcLPMO10-Man5. The intramolecular coupling of the LPMO with a mannanase and two CBMs ensures that the LPMO is directed to areas where mannans are removed and cellulose thus becomes available.

摘要

由于与其他复杂多糖相关联,从木质纤维素材料中提取和利用纤维素需要多种碳水化合物活性酶的协同作用,包括多种糖苷水解酶(GHs)和裂解多糖单加氧酶(LPMOs)。这些酶之间的相互作用以及自然界协调它们共存和联合作用的方式是极具科学和工业价值的研究课题。为了更深入了解这些问题,我们研究了嗜纤维热芽孢杆菌(Caldibacillus cellulovorans)的一种酶(CcLPMO10-Man5)的木质纤维素降解能力,该酶包含一个LPMO结构域、一个GH5甘露聚糖酶结构域和两个3型碳水化合物结合模块(CBM3)。使用天然软木底物,我们发现这种酶通过去除覆盖在纤维素上的甘露聚糖以及氧化破坏纤维素结构来促进纤维素酶活性,即纤维素糖化。与CcLPMO10-Man5的协同作用在两种测试的纤维二糖水解酶中最为显著,而对一种测试的内切葡聚糖酶的影响较小,这与纤维二糖水解酶和LPMOs攻击纤维素的相同结晶区域,而内切葡聚糖酶攻击半结晶和无定形区域的观点一致。重要的是,在没有甘露聚糖酶结构域的情况下,CcLPMO10-Man5的LPMO结构域无法接触到软木纤维素。考虑到未与底物结合的LPMOs对自催化失活敏感,这种分子内协同作用为CcLPMO10-Man5等模块化酶的进化提供了完美的解释。LPMO与甘露聚糖酶和两个CBM的分子内偶联确保LPMO被引导至去除甘露聚糖从而使纤维素可用的区域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6eff/11705215/90cceaabc779/FEBS-292-75-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验