Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, China.
National Research Institute for Family Planning, Beijing, China.
Sci Rep. 2018 Jul 2;8(1):9967. doi: 10.1038/s41598-018-28270-8.
Droplet microfluidics has attracted significant interests in functional microcapsule synthesis, pharmaceuticals, fine chemicals, cosmetics and biomedical research. The low variability of performing chemical reactions inside droplets could benefit from improved homogeneity and reproducibility. Therefore, accurate and convenient methods are needed to monitor dynamic droplet generation processes. Here, a novel Cosine Similarity Algorithm (CSA) method was developed to monitor the droplet generation frequency accurately and rapidly. With a microscopic droplet generation video clip captured with a high-speed camera, droplet generation frequency can be computed accurately by calculating the cosine similarities between the frames in the video clip. Four kinds of dynamic droplet generation processes were investigated including (1) a stable condition in a single microfluidic channel, (2) a stable condition in multiple microfluidic channels, (3) a single microfluidic channel with artificial disturbances, and (4) microgel fabrication with or without artificial disturbances. For a video clip with 5,000 frames and a spatial resolution of 512 × 62 pixels, droplet generation frequency up to 4,707.9 Hz can be calculated in less than 1.70 s with an absolute relative calculation error less than 0.08%. Artificial disturbances in droplet generation processes can be precisely determined using the CSA method. This highly effective CSA method could be a powerful tool for further promoting the research of droplet microfluidics.
液滴微流控技术在功能微胶囊合成、药物、精细化学品、化妆品和生物医学研究等领域引起了广泛关注。液滴内部化学反应的低变异性可以通过提高均一性和重现性来实现。因此,需要准确、方便的方法来监测动态液滴生成过程。在这里,开发了一种新的余弦相似性算法(CSA)方法,用于准确、快速地监测液滴生成频率。通过高速摄像机拍摄的微观液滴生成视频片段,可以通过计算视频片段中帧之间的余弦相似度来准确计算液滴生成频率。研究了四种动态液滴生成过程,包括(1)单微流道中的稳定条件,(2)多微流道中的稳定条件,(3)带有人为干扰的单微流道,以及(4)带有或不带有人为干扰的微凝胶制备。对于一个包含 5000 帧且空间分辨率为 512×62 像素的视频片段,使用 CSA 方法可以在不到 1.70 秒的时间内计算高达 4707.9 Hz 的液滴生成频率,绝对相对计算误差小于 0.08%。可以使用 CSA 方法精确确定液滴生成过程中的人为干扰。这种高效的 CSA 方法可能成为进一步推动液滴微流控技术研究的有力工具。