Suppr超能文献

新生儿期暴露于超生理水平的氧会损害学习和记忆所需的信号通路。

Supraphysiological Levels of Oxygen Exposure During the Neonatal Period Impairs Signaling Pathways Required for Learning and Memory.

机构信息

Departments of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.

Departments of Bioinformatics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.

出版信息

Sci Rep. 2018 Jul 2;8(1):9914. doi: 10.1038/s41598-018-28220-4.

Abstract

Preterm infants often require prolonged oxygen supplementation and are at high risk of neurodevelopmental impairment. We recently reported that adult mice exposed to neonatal hyperoxia (postnatal day [P] 2 to 14) had spatial navigation memory deficits associated with hippocampal shrinkage. The mechanisms by which early oxidative stress impair neurodevelopment are not known. Our objective was to identify early hyperoxia-induced alterations in hippocampal receptors and signaling pathways necessary for memory formation. We evaluated C57BL/6 mouse pups at P14, exposed to either 85% oxygen or air from P2 to 14. We performed targeted analysis of hippocampal ligand-gated ion channels and proteins necessary for memory formation, and global bioinformatic analysis of differentially expressed hippocampal genes and proteins. Hyperoxia decreased hippocampal mGLU7, TrkB, AKT, ERK2, mTORC1, RPS6, and EIF4E and increased α3, α5, and ɤ2 subunits of GABA receptor and PTEN proteins, although changes in gene expression were not always concordant. Bioinformatic analysis indicated dysfunction in mitochondria and global protein synthesis and translational processes. In conclusion, supraphysiological oxygen exposure reduced proteins necessary for hippocampus-dependent memory formation and may adversely impact hippocampal mitochondrial function and global protein synthesis. These early hippocampal changes may account for memory deficits seen in preterm survivors following prolonged oxygen supplementation.

摘要

早产儿通常需要长时间的氧气补充,并且存在神经发育受损的高风险。我们最近报道,暴露于新生期高氧(出生后第 2 天至第 14 天)的成年小鼠会出现与海马体缩小相关的空间导航记忆缺陷。早期氧化应激损害神经发育的机制尚不清楚。我们的目的是确定早期高氧诱导的海马体受体和信号通路的改变,这些改变对于记忆形成是必需的。我们在 P14 时评估了 C57BL/6 幼鼠,这些幼鼠在 P2 至 P14 期间暴露于 85%的氧气或空气。我们对海马体配体门控离子通道和记忆形成所需的蛋白质进行了靶向分析,并对海马体差异表达的基因和蛋白质进行了全局生物信息学分析。高氧降低了海马体 mGLU7、TrkB、AKT、ERK2、mTORC1、RPS6 和 EIF4E,增加了 GABA 受体的 α3、α5 和 ɤ2 亚基和 PTEN 蛋白,尽管基因表达的变化并不总是一致的。生物信息学分析表明线粒体和全球蛋白质合成和翻译过程出现功能障碍。总之,超生理氧暴露降低了海马体依赖记忆形成所必需的蛋白质,可能对海马体线粒体功能和全局蛋白质合成产生不利影响。这些早期海马体的变化可能解释了早产儿在长时间补充氧气后出现的记忆缺陷。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a849/6028393/188e26a07829/41598_2018_28220_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验