The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin 300457, People's Republic of China.
Nanotechnology. 2018 Sep 21;29(38):385205. doi: 10.1088/1361-6528/aad0b4. Epub 2018 Jul 3.
Plasmon nanoresonators in graphene have many applications in biosensing, photodetectors and modulators. As a result, an efficient and precise patterning technique for graphene is required. Helium ion lithography (HIL) emerges as a promising tool for direct writing fabrication because it owns improved fabrication precision compared to electron beam lithography and conventional gallium focused ion beam technique. In this paper, utilizing HIL, a set of graphene triangles are patterned and excellent plasmon response is detected. Particularly, the evolution of breathing mode in these structures is unveiled by scattering-type scanning near-field optical microscopy. Besides, the plasmon response of graphene structures can be efficiently tuned by adjusting the irradiated ion dose during the etching process, which can be explained by the phenomenal simulation model. Our work demonstrates that HIL is a feasible way for precise plasmonic nanostructure fabrication, and can be applied to graphene plasmon control at the nanoscale as well.
在石墨烯中的等离激元纳米谐振器在生物传感、光探测器和调制器中有许多应用。因此,需要一种高效、精确的石墨烯图案化技术。氦离子光刻(HIL)作为一种有前途的直写制造工具出现,因为它与电子束光刻和传统的镓聚焦离子束技术相比,具有更高的制造精度。在本文中,利用 HIL 对一组石墨烯三角形进行了图案化,并检测到了优异的等离子体响应。特别地,通过散射型近场光学显微镜揭示了这些结构中呼吸模式的演化。此外,通过调整刻蚀过程中的辐照离子剂量,可以有效地调整石墨烯结构的等离子体响应,这可以通过现象模拟模型来解释。我们的工作表明,HIL 是一种用于精确等离子体纳米结构制造的可行方法,并且可以应用于纳米尺度的石墨烯等离子体控制。