Jauk Stefanie, Kramer Diether, Schulz Stefan, Leodolter Werner
CBmed, Graz, Austria.
Steiermärkische Krankenanstaltengesellschaft m.b.H. (KAGes), Graz, Austria.
Stud Health Technol Inform. 2018;251:249-252.
The use of electronic health records for risk prediction models requires a sufficient quality of input data to ensure patient safety. The aim of our study was to evaluate the influence of incorrect administrative diabetes coding on the performance of a risk prediction model for delirium, as diabetes is known to be one of the most relevant variables for delirium prediction. We used four data sets varying in their correctness and completeness of diabetes coding as input for different machine learning algorithms. Although there was a higher prevalence of diabetes in delirium patients, the model performance parameters did not vary between the data sets. Hence, there was no significant impact of incorrect diabetes coding on the performance for our model predicting delirium.
将电子健康记录用于风险预测模型需要足够质量的输入数据以确保患者安全。我们研究的目的是评估糖尿病行政编码错误对谵妄风险预测模型性能的影响,因为糖尿病是已知的谵妄预测最相关变量之一。我们使用了四个糖尿病编码正确性和完整性各不相同的数据集作为不同机器学习算法的输入。虽然谵妄患者中糖尿病的患病率较高,但各数据集之间的模型性能参数并无差异。因此,糖尿病编码错误对我们预测谵妄的模型性能没有显著影响。