Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, 35000, Rennes, France.
Chemistry. 2018 Oct 22;24(59):15696-15705. doi: 10.1002/chem.201802105. Epub 2018 Sep 24.
Directing the functionality of molecules, materials and biophysical systems is challenging both from fundamental and applied standpoints. For example, understanding the elementary processes responsible for light-induced transformations require watching electronic and structural reorganizations on their intrinsic timescales. The X-ray free electron lasers (X-FEL) represent a new generation of incredibly short and ultra-bright X-ray source, which open new possibilities for developing the multidisciplinary field of ultrafast science. Experiments around X-FEL provide probes, sensitive to electronic and structural reorganizations, able to monitor transformations on the femtosecond timescale (1 fs=10 s). Recent years have seen terrific successes in providing a detailed view on light-induced processes, compared to what was understood from conventional optical pump-probe spectroscopy. This Concept article aims at illustrating, through recent studies mainly focussing on light-induced excited spin state trapping, how these X-FEL based techniques can help understanding light-activated functions, by monitoring elementary electronic and structural processes that may occur beyond the Born-Oppenheimer approximation.
从基础和应用的角度来看,控制分子、材料和生物物理系统的功能都极具挑战性。例如,要理解导致光诱导转变的基本过程,就需要在其固有时间尺度上观察电子和结构的重新排列。自由电子 X 射线激光(X-FEL)代表了新一代极其短和超亮的 X 射线源,为超快科学这一多学科领域的发展开辟了新的可能性。X-FEL 周围的实验提供了对电子和结构重新排列敏感的探针,能够在飞秒时间尺度(1 飞秒=10 秒)上监测转变。与传统的光泵浦探测光谱相比,近年来在提供对光诱导过程的详细了解方面取得了巨大的成功。本文主要通过聚焦于光致激发态捕获的最新研究,旨在说明这些基于 X-FEL 的技术如何通过监测可能超出 Born-Oppenheimer 近似的基本电子和结构过程,帮助理解光激活功能。