Chapman Henry N, Hau-Riege Stefan P, Bogan Michael J, Bajt Sasa, Barty Anton, Boutet Sébastien, Marchesini Stefano, Frank Matthias, Woods Bruce W, Benner W Henry, London Richard A, Rohner Urs, Szöke Abraham, Spiller Eberhard, Möller Thomas, Bostedt Christoph, Shapiro David A, Kuhlmann Marion, Treusch Rolf, Plönjes Elke, Burmeister Florian, Bergh Magnus, Caleman Carl, Huldt Gösta, Seibert M Marvin, Hajdu Janos
University of California, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA.
Nature. 2007 Aug 9;448(7154):676-9. doi: 10.1038/nature06049.
Extremely intense and ultrafast X-ray pulses from free-electron lasers offer unique opportunities to study fundamental aspects of complex transient phenomena in materials. Ultrafast time-resolved methods usually require highly synchronized pulses to initiate a transition and then probe it after a precisely defined time delay. In the X-ray regime, these methods are challenging because they require complex optical systems and diagnostics. Here we propose and apply a simple holographic measurement scheme, inspired by Newton's 'dusty mirror' experiment, to monitor the X-ray-induced explosion of microscopic objects. The sample is placed near an X-ray mirror; after the pulse traverses the sample, triggering the reaction, it is reflected back onto the sample by the mirror to probe this reaction. The delay is encoded in the resulting diffraction pattern to an accuracy of one femtosecond, and the structural change is holographically recorded with high resolution. We apply the technique to monitor the dynamics of polystyrene spheres in intense free-electron-laser pulses, and observe an explosion occurring well after the initial pulse. Our results support the notion that X-ray flash imaging can be used to achieve high resolution, beyond radiation damage limits for biological samples. With upcoming ultrafast X-ray sources we will be able to explore the three-dimensional dynamics of materials at the timescale of atomic motion.
自由电子激光产生的极强超快X射线脉冲为研究材料中复杂瞬态现象的基本特性提供了独特机遇。超快时间分辨方法通常需要高度同步的脉冲来引发转变,然后在精确设定的时间延迟后对其进行探测。在X射线领域,这些方法颇具挑战性,因为它们需要复杂的光学系统和诊断设备。在此,我们受牛顿“尘埃镜”实验启发,提出并应用一种简单的全息测量方案,以监测微观物体的X射线诱导爆炸。将样品置于X射线镜附近;脉冲穿过样品引发反应后,被镜子反射回样品以探测该反应。延迟被编码到所得衍射图案中,精度可达飞秒级,结构变化则以高分辨率全息记录。我们应用该技术监测强自由电子激光脉冲中聚苯乙烯球体的动力学过程,观察到在初始脉冲之后很久才发生的爆炸。我们的结果支持这样一种观点,即X射线闪光成像可用于实现高分辨率,超越生物样品的辐射损伤极限。随着即将出现的超快X射线源,我们将能够在原子运动的时间尺度上探索材料的三维动力学。