Sino-French Institute of Nuclear Engineering and Technology , Sun Yat-sen University , Zhuhai 519082 , China.
ACS Appl Mater Interfaces. 2018 Sep 5;10(35):29954-29964. doi: 10.1021/acsami.8b06020. Epub 2018 Aug 21.
We propose a doping method by using [6,6]-phenyl-C-butyric acid methyl ester (PCBM) to fill the grain boundary interstices of the methylammonium lead iodide (CHNHPbI) perovskite for the elimination of pinholes. A sandwiched PCBM layer is also used between the perovskite and TiO layers to improve the interfacial contact. By using these two methods, the fabricated perovskite solar cells show a low hysteresis effect and high current density, which result from the improved compactness at the grain boundaries of the perovskite surface and the interface between the TiO/perovskite layers. The theoretical and experimental results indicate that PCBM can effectively suppress carrier recombination, regardless of the interfacial layer or dopant. We also found that the dark current reduced during the analysis of dark state current-voltage ( I- V) characteristics. The slopes of the I- V curves for the fluorine-doped tin oxide/PCBM-doped perovskite/Au device reduce monotonically with the increase in the PCBM concentration from 0.01 to 0.1 wt %, which suggest the decreasing defects in the perovskite layer. By tuning the PCBM doping and controlling the preparation process, we have successfully fabricated a planar TiO/PCBM-based PCBM-doped perovskite photovoltaic device that reaches a high current density of 22.6 mA/cm and an outstanding photoelectric conversion efficiency up to 18.3%. The controllability of the PCBM doping concentration and interfacial preparation shed light on further optimization of the photoelectric conversion efficiency of perovskite solar cells.
我们提出了一种通过使用[6,6]-苯基-C-丁酸甲酯(PCBM)填充碘化甲基铵铅(CHNHPbI)钙钛矿的晶粒间界空隙来消除针孔的掺杂方法。在钙钛矿和 TiO 层之间还使用了夹在中间的 PCBM 层,以改善界面接触。通过使用这两种方法,所制备的钙钛矿太阳能电池表现出低滞后效应和高电流密度,这是由于钙钛矿表面和 TiO/钙钛矿层之间的界面的晶粒间界的致密性得到了改善。理论和实验结果表明,PCBM 可以有效地抑制载流子复合,无论是在界面层还是掺杂剂中。我们还发现,在暗态电流-电压(I-V)特性分析中,暗电流减小。对于掺氟氧化锡/PCBM 掺杂钙钛矿/Au 器件,I-V 曲线的斜率随着 PCBM 浓度从 0.01 到 0.1wt%的增加而单调降低,这表明钙钛矿层中的缺陷减少。通过调整 PCBM 掺杂和控制制备工艺,我们成功地制备了基于 TiO/PCBM 的平面 PCBM 掺杂钙钛矿光伏器件,其达到 22.6mA/cm 的高电流密度和高达 18.3%的出色光电转换效率。PCBM 掺杂浓度和界面制备的可控性为进一步优化钙钛矿太阳能电池的光电转换效率提供了思路。