Suppr超能文献

用于高效稳定钙钛矿太阳能电池的背面钙钛矿界面原位钝化

In Situ Passivation on Rear Perovskite Interface for Efficient and Stable Perovskite Solar Cells.

作者信息

Wang Gaoxiang, Wang Lipeng, Qiu Jianhang, Yan Zheng, Li Changji, Dai Chunli, Zhen Chao, Tai Kaiping, Yu Wei, Jiang Xin

机构信息

Shenyang National Laboratory for Materials Science (SYNL) , Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS) , Shenyang 110016 , China.

School of Materials Science and Engineering , University of Science and Technology of China , Shenyang 110016 , China.

出版信息

ACS Appl Mater Interfaces. 2020 Feb 12;12(6):7690-7700. doi: 10.1021/acsami.9b18572. Epub 2020 Jan 31.

Abstract

Despite the rocketing rise in power conversion efficiencies (PCEs), the performance of perovskite solar cells (PSCs) is still limited by the carrier transfer loss at the interface between perovskite (PVSK) absorbers and charge transporting layers. Here, we propose a novel in situ passivation strategy by using [6,6]-phenyl-C-butyric acid methyl ester (PCBM) to improve the charge dynamics at the rear PVSK/CTL interface in the n-i-p structure device. A pre-deposited PCBM-doped PbI layer is redissolved during PVSK deposition in our routine, establishing a bottom-up PCBM gradient that is facile for charge extraction. Meanwhile, the surface defects are in situ-passivated via PCBM-PVSK interaction, which substantially suppresses the trap-assisted recombination at the rear interface. Due to the synergistic effect of charge-extraction promotion and trap passivation, the fabricated PSCs deliver a champion PCE of 20.10% with attenuated hysteresis and improved long-term stability, much higher than the 18.39% of the reference devices. Our work demonstrates a promising interfacial engineering strategy for further improving the performance of PSCs.

摘要

尽管功率转换效率(PCE)飞速提高,但钙钛矿太阳能电池(PSC)的性能仍受钙钛矿(PVSK)吸收层与电荷传输层之间界面处的载流子转移损失限制。在此,我们提出一种通过使用[6,6]-苯基-C-丁酸甲酯(PCBM)的新型原位钝化策略,以改善n-i-p结构器件中后表面PVSK/CTL界面处的电荷动力学。在我们的常规工艺中,预沉积的PCBM掺杂的PbI层在PVSK沉积过程中重新溶解,形成便于电荷提取的自下而上的PCBM梯度。同时,表面缺陷通过PCBM-PVSK相互作用原位钝化,这大大抑制了后表面界面处的陷阱辅助复合。由于电荷提取促进和陷阱钝化的协同作用,制备的PSC实现了20.10%的最佳PCE,滞后现象减弱且长期稳定性提高,远高于参考器件的18.39%。我们的工作展示了一种用于进一步提高PSC性能的有前景的界面工程策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验