Centre for Atmospheric Science, Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , United Kingdom.
National Centre for Atmospheric Science, NCAS , Cambridge CB2 1EW , United Kingdom.
Anal Chem. 2018 Aug 21;90(16):9716-9724. doi: 10.1021/acs.analchem.8b00114. Epub 2018 Jul 31.
The interaction between atmospheric aerosol particles and water vapor influences aerosol size, phase, and composition, parameters which critically influence their impacts in the atmosphere. Methods to accurately measure aerosol water uptake for a wide range of particle types are therefore merited. We present here a new method for characterizing aerosol hygroscopicity, an impaction stage containing a microelectromechanical systems (MEMS) microresonator. We find that deliquescence and efflorescence relative humidities (RHs) of sodium chloride and ammonium sulfate are easily diagnosed via changes in resonant frequency and peak sharpness. These agree well with literature values and thermodynamic models. Furthermore, we demonstrate that, unlike other resonator-based techniques, full hygroscopic growth curves can be derived, including for an inorganic-organic mixture (sodium chloride and malonic acid) which remains liquid at all RHs. The response of the microresonator frequency to temperature and particle mechanical properties and the resulting limitations when measuring hygroscopicity are discussed. MEMS resonators show great potential as miniaturized ambient aerosol mass monitors, and future work will consider the applicability of our approach to complex ambient samples. The technique also offers an alternative to established methods for accurate thermodynamic measurements in the laboratory.
大气气溶胶粒子与水蒸气之间的相互作用会影响气溶胶的大小、相态和组成,这些参数对其在大气中的影响至关重要。因此,有必要开发准确测量各种类型气溶胶水吸湿性的方法。我们在此提出了一种新的气溶胶吸湿性表征方法,该方法采用包含微机电系统(MEMS)微谐振器的撞击式分级器。我们发现,通过谐振频率和峰值锐度的变化,很容易诊断出氯化钠和硫酸铵的吸湿和解吸相对湿度(RH)。这些结果与文献值和热力学模型吻合较好。此外,我们还证明,与其他基于谐振器的技术不同,该方法可以得出完整的吸湿性生长曲线,包括在所有 RH 下均为液态的无机-有机混合物(氯化钠和丙二酸)。讨论了微谐振器频率对温度和颗粒机械性能的响应以及在测量吸湿性时产生的限制。MEMS 谐振器在作为小型化环境气溶胶质量监测器方面具有很大的潜力,未来的工作将考虑我们的方法在复杂环境样品中的适用性。该技术还为实验室中进行准确的热力学测量提供了一种替代方法。