Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK.
The Nanoscience Centre, University of Cambridge, Cambridge CB3 0FF, UK.
Sensors (Basel). 2022 Jul 22;22(15):5485. doi: 10.3390/s22155485.
This paper reports on the design, and implementation of piezoelectric-on-silicon MEMS resonators installed within a portable experimental setup for sensing nanoparticles in a laboratory environment. MEMS oscillators with a center frequency of approximately 5.999 MHz are employed for sensing 50 nm size-selected silver nanoparticles generated in the laboratory. The same experimental setup is then assembled to sense indoor particles that are present in the laboratory environment. The challenges associated with particle deposition as a result of assembling the portable experimental setup is highlighted. Furthermore, the MEMS oscillators demonstrate that the total mass of silver nanoparticles deposited onto the MEMS resonator surface using the inertial impaction technique-based experimental setup is approximately 7.993 nanograms. The total indoor particle mass accumulated on the MEMS resonator surface is estimated to be approximately 1.732 nanograms and 26.9 picograms for two different runs. The frequency resolution of the MEMS oscillator is estimated to be approximately 32 ppb and, consequently, the minimum detectable particle mass is approximately 60 femtograms for a 9.2 s integration time.
本文报告了在便携式实验装置中安装硅基压电 MEMS 谐振器的设计和实现,用于在实验室环境中感测纳米颗粒。使用中心频率约为 5.999 MHz 的 MEMS 振荡器来感测在实验室中生成的 50nm 尺寸选择的银纳米颗粒。然后,使用相同的实验装置来感测实验室环境中存在的室内颗粒。强调了由于组装便携式实验装置而导致颗粒沉积的相关挑战。此外,MEMS 振荡器表明,使用基于惯性冲击技术的实验装置将银纳米颗粒沉积到 MEMS 谐振器表面的总质量约为 7.993 纳克。对于两次不同的运行,估计在 MEMS 谐振器表面上积累的总室内颗粒质量约为 1.732 纳克和 26.9 皮克。MEMS 振荡器的频率分辨率估计约为 32 ppb,因此,对于 9.2 s 的积分时间,最小可检测颗粒质量约为 60 飞克。