Suppr超能文献

棘阿米巴属中组氨酸生物合成的结构和功能研究表明了一种新型的分子排列和抗菌药物靶点。

Structural and functional studies of histidine biosynthesis in Acanthamoeba spp. demonstrates a novel molecular arrangement and target for antimicrobials.

机构信息

Institute of Biomedical and Environmental Health Research, School of Science and Sport, University of West of Scotland, Paisley, United Kingdom.

Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom.

出版信息

PLoS One. 2018 Jul 3;13(7):e0198827. doi: 10.1371/journal.pone.0198827. eCollection 2018.

Abstract

Acanthamoeba is normally free-living, but sometimes facultative and occasionally opportunistic parasites. Current therapies are, by necessity, arduous and yet poorly effective due to their inabilities to kill cyst stages or in some cases to actually induce encystation. Acanthamoeba can therefore survive as cysts and cause disease recurrence. Herein, in pursuit of better therapies and to understand the biochemistry of this understudied organism, we characterize its histidine biosynthesis pathway and explore the potential of targeting this with antimicrobials. We demonstrate that Acanthamoeba is a histidine autotroph, but with the ability to scavenge preformed histidine. It is able to grow in defined media lacking this amino acid, but is inhibited by 3-amino-1,2,4-triazole (3AT) that targets Imidazoleglycerol-Phosphate Dehydratase (IGPD) the rate limiting step of histidine biosynthesis. The structure of Acanthamoeba IGPD has also been determined in complex with 2-hydroxy-3-(1,2,4-triazol-1-yl) propylphosphonate [(R)-C348], a recently described novel inhibitor of Arabidopsis thaliana IGPD. This compound inhibited the growth of four Acanthamoeba species, having a 50% inhibitory concentration (IC50) ranging from 250-526 nM. This effect could be ablated by the addition of 1 mM exogenous free histidine, but importantly not by physiological concentrations found in mammalian tissues. The ability of 3AT and (R)-C348 to restrict the growth of four strains of Acanthamoeba spp. including a recently isolated clinical strain, while not inducing encystment, demonstrates the potential therapeutic utility of targeting the histidine biosynthesis pathway in Acanthamoeba.

摘要

棘阿米巴原虫通常为自由生活,但有时是兼性的,偶尔是机会主义寄生虫。由于目前的治疗方法无法杀死囊胞期或在某些情况下实际上无法诱导囊胞形成,因此是费力且效果不佳。棘阿米巴原虫因此可以作为囊胞存活并导致疾病复发。在此,为了寻求更好的治疗方法并了解这个研究不足的生物体的生物化学,我们对其组氨酸生物合成途径进行了表征,并探索了用抗生素靶向该途径的潜力。我们证明棘阿米巴原虫是组氨酸自养生物,但具有摄取预形成组氨酸的能力。它能够在缺乏这种氨基酸的限定培养基中生长,但被 3-氨基-1,2,4-三唑(3AT)抑制,3AT 是组氨酸生物合成的限速步骤,靶向咪唑甘油-磷酸脱水酶(IGPD)。棘阿米巴原虫 IGPD 的结构也已与 2-羟基-3-(1,2,4-三唑-1-基)丙基膦酸[(R)-C348]确定,后者是最近描述的拟南芥 IGPD 的新型抑制剂。该化合物抑制了四种棘阿米巴原虫的生长,其 50%抑制浓度(IC50)范围为 250-526 nM。这种作用可以通过添加 1 mM 外源性游离组氨酸来消除,但重要的是不能通过哺乳动物组织中发现的生理浓度来消除。3AT 和 (R)-C348 能够限制四种棘阿米巴原虫株(包括最近分离的临床株)的生长,而不诱导囊胞形成,这表明靶向棘阿米巴原虫组氨酸生物合成途径具有潜在的治疗用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7592/6029752/7c8dff787b06/pone.0198827.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验