Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México.
Laboratorio de Química de Biomacromoléculas 3, Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México.
FEBS J. 2020 Feb;287(4):763-782. doi: 10.1111/febs.15019. Epub 2019 Aug 5.
The study of binding thermodynamics is essential to understand how affinity and selectivity are acquired in molecular complexes. Periplasmic binding proteins (PBPs) are macromolecules of biotechnological interest that bind a broad number of ligands and have been used to design biosensors. The lysine-arginine-ornithine binding protein (LAO) is a PBP of 238 residues that binds the basic amino acids l-arginine and l-histidine with nm and μm affinity, respectively. It has been shown that the affinity difference for arginine and histidine binding is caused by enthalpy, this correlates with the higher number of protein-ligand contacts formed with arginine. In order to elucidate the structural bases that determine binding affinity and selectivity in LAO, the contribution of protein-ligand contacts to binding energetics was assessed. To this end, an alanine scanning of the LAO-binding site residues was performed and arginine and histidine binding were characterized by isothermal titration calorimetry and X-ray crystallography. Although unexpected enthalpy and entropy changes were observed in some mutants, thermodynamic data correlated with structural information, especially, the binding heat capacity change. We found that selectivity is conferred by several residues rather than exclusive arginine-protein interactions. Furthermore, crystallographic structures revealed that protein-ligand contributions to binding thermodynamics are highly influenced by the solvent. Finally, we found a similar backbone conformation in all the closed structures obtained, but different structures in the open state, suggesting that the binding site residues of LAO play an important role in stabilizing not only the holo conformation, but also the apo state. DATABASE: Structural data are available in the Protein Data Bank database under the accession numbers 6MLE, 6MLN, 6MLG, 6MKX, 6MLI, 6MLA, 6MKU, 6MKW, 6ML0, 6MLD, 6MLV, 6MLO, 6MLP, 6ML9, 6MLJ.
结合热力学的研究对于理解分子复合物中亲和力和选择性是如何获得的至关重要。周质结合蛋白(PBPs)是具有生物技术应用价值的生物大分子,它们可以结合广泛的配体,并已被用于设计生物传感器。赖氨酸-精氨酸-鸟氨酸结合蛋白(LAO)是一种由 238 个残基组成的 PBP,分别以 nm 和 μm 的亲和力结合碱性氨基酸 l-精氨酸和 l-组氨酸。已经表明,精氨酸和组氨酸结合的亲和力差异是由焓引起的,这与与精氨酸形成的更多的蛋白质-配体接触有关。为了阐明决定 LAO 结合亲和力和选择性的结构基础,评估了蛋白质-配体接触对结合能的贡献。为此,对 LAO 结合位点残基进行了丙氨酸扫描,并通过等温滴定量热法和 X 射线晶体学对精氨酸和组氨酸结合进行了表征。尽管在一些突变体中观察到了意想不到的焓和熵变化,但热力学数据与结构信息相关,特别是与结合热容量变化相关。我们发现,选择性是由几个残基赋予的,而不是精氨酸-蛋白质相互作用的排他性。此外,晶体结构表明,蛋白质-配体对结合热力学的贡献受到溶剂的高度影响。最后,我们发现所有闭合结构中都存在相似的骨架构象,但在开放状态下结构不同,这表明 LAO 的结合位点残基不仅对稳定全构象,而且对apo 状态都起着重要作用。数据库:结构数据可在蛋白质数据库(PDB)中以 6MLE、6MLN、6MLG、6MKX、6MLI、6MLA、6MKU、6MKW、6ML0、6MLD、6MLV、6MLO、6MLP、6ML9、6MLJ 的登录号获得。