Suppr超能文献

用于微生物燃料电池的可扩展尺寸空气呼吸阴极中源自铁-尼卡巴嗪的无铂族金属电催化剂

Iron-Nicarbazin derived platinum group metal-free electrocatalyst in scalable-size air-breathing cathodes for microbial fuel cells.

作者信息

Erable Benjamin, Oliot Manon, Lacroix Rémy, Bergel Alain, Serov Alexey, Kodali Mounika, Santoro Carlo, Atanassov Plamen

机构信息

Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France.

6T-MIC Ingénieries, 9 rue du développement, 31320, Castanet-Tolosan, France.

出版信息

Electrochim Acta. 2018 Jul 1;277:127-135. doi: 10.1016/j.electacta.2018.04.190.

Abstract

In this work, a platinum group metal-free (PGM-free) catalyst based on iron as transitional metal and Nicarbazin (NCB) as low cost organic precursor was synthesized using Sacrificial Support Method (SSM). The catalyst was then incorporated into a large area air-breathing cathode fabricated by pressing with a large diameter pellet die. The electrochemical tests in abiotic conditions revealed that after a couple of weeks of successful operation, the electrode experienced drop in performances in reason of electrolyte leakage, which was not an issue with the smaller electrodes. A decrease in the hydrophobic properties over time and a consequent cathode flooding was suspected to be the cause. On the other side, in the present work, for the first time, it was demonstrated the proof of principle and provided initial guidance for manufacturing MFC electrodes with large geometric areas. The tests in MFCs showed a maximum power density of 1.85 W m. The MFCs performances due to the addition of Fe-NCB were much higher compared to the iron-free material. A numerical model using Nernst-Monod and Butler-Volmer equations were used to predict the effect of electrolyte solution conductivity and distance anode-cathode on the overall MFC power output. Considering the existing conditions, the higher overall power predicted was 3.6 mW at 22.2 S m and at inter-electrode distance of 1 cm.

摘要

在本工作中,采用牺牲载体法(SSM)合成了一种以铁作为过渡金属、尼卡巴嗪(NCB)作为低成本有机前驱体的无铂族金属(PGM-free)催化剂。然后将该催化剂掺入通过大直径压片模具压制而成的大面积空气呼吸阴极中。非生物条件下的电化学测试表明,在成功运行几周后,由于电解液泄漏,电极性能出现下降,而较小的电极则不存在这个问题。怀疑是疏水性随时间降低以及随之而来的阴极水淹导致了这一现象。另一方面,在本工作中,首次证明了原理的可行性,并为制造具有大几何面积的微生物燃料电池电极提供了初步指导。微生物燃料电池测试显示最大功率密度为1.85 W m 。与无铁材料相比,添加Fe-NCB后的微生物燃料电池性能要高得多。使用能斯特 - 莫诺德方程和巴特勒 - 伏默尔方程的数值模型来预测电解液电导率和阳极 - 阴极距离对微生物燃料电池整体功率输出的影响。考虑到现有条件,预测在22.2 S m 和电极间距为1 cm时的较高整体功率为3.6 mW。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验