Department of Neurosurgery, University of California, Los Angeles, CA, United States of America. Co-first authors, contributing equally to this manuscript.
J Neural Eng. 2018 Oct;15(5):056016. doi: 10.1088/1741-2552/aad0fb. Epub 2018 Jul 4.
β hypersynchrony within the basal ganglia-thalamocortical (BGTC) network has been suggested as a hallmark of Parkinson disease (PD) pathophysiology. Subthalamic nucleus (STN)-DBS has been shown to alter cortical-subcortical synchronization. It is unclear whether this is a generalizable phenomenon of therapeutic stimulation across targets.
We aimed to evaluate whether DBS of the globus pallidus internus (GPi) results in cortical-subcortical desynchronization, despite the lack of monosynaptic connections between GPi and sensorimotor cortex.
We recorded local field potentials from the GPi and electrocorticographic signals from the ipsilateral sensorimotor cortex, off medications in nine PD patients, undergoing DBS implantation. We analyzed both local oscillatory power and functional connectivity (coherence and debiased weighted phase lag index (dWPLI)) with and without stimulation while subjects were resting with eyes open.
DBS significantly suppressed low β power within the GPi (-26.98% ± 15.14%), p < 0.05) without modulation of sensorimotor cortical β power (low or high). In contrast, stimulation suppressed pallidocortical high β coherence (-38.89% ± 6.19%, p = 0.02) and dWPLI (-61.40% ± 8.75%, p = 0.02). Changes in cortical-subcortical functional connectivity were spatially specific to the motor cortex.
We highlight the role of DBS in desynchronizing network activity, particularly in the high β band. The current study of GPi-DBS suggests these network-level effects are not necessarily dependent and potentially may be independent of the hyperdirect pathway. Importantly, these results draw a sharp distinction between the potential significance of low β oscillations locally within the basal ganglia and high β oscillations across the BGTC motor circuit.
基底节-丘脑皮质(BGTC)网络中的β超同步已被认为是帕金森病(PD)病理生理学的标志。已经证明丘脑底核(STN)-DBS 可以改变皮质-皮质下同步。尚不清楚这是否是跨靶点治疗刺激的普遍现象。
我们旨在评估苍白球 internus(GPi)的 DBS 是否会导致皮质-皮质下去同步,尽管 GPi 和感觉运动皮层之间没有单突触连接。
我们在九名接受 DBS 植入的 PD 患者停药时,从 GPi 记录局部场电位,并从对侧感觉运动皮层记录脑电信号。我们在患者睁眼休息时,分析刺激前后的局部振荡功率和功能连接(相干性和无偏权重相位滞后指数(dWPLI))。
DBS 显著抑制了 GPi 内的低β功率(-26.98%±15.14%,p<0.05),而不调节感觉运动皮质的β功率(低或高)。相反,刺激抑制了苍白球皮质的高β相干性(-38.89%±6.19%,p=0.02)和 dWPLI(-61.40%±8.75%,p=0.02)。皮质-皮质下功能连接的变化在空间上与运动皮层有关。
我们强调了 DBS 在去同步网络活动中的作用,特别是在高β频带。目前对 GPi-DBS 的研究表明,这些网络级效应不一定依赖于直接通路,而且可能是独立的。重要的是,这些结果在基底节内局部低β振荡和 BGTC 运动回路中的高β振荡之间划出了鲜明的区别。