Suppr超能文献

肥胖管理政策在哪些方面能产生最大影响?通过微观模拟方法评估亚人群。

Where can obesity management policy make the largest impact? Evaluating sub-populations through a microsimulation approach.

作者信息

Su Wenqing, Chen Fang, Dall Timothy M, Zvenyach Tracy, Kyle Theodore K, Perreault Leigh

机构信息

a IHS Markit , Washington DC , USA.

b Novo Nordisk, Inc. , Washington DC , USA.

出版信息

J Med Econ. 2018 Sep;21(9):936-943. doi: 10.1080/13696998.2018.1496922. Epub 2018 Jul 17.

Abstract

BACKGROUND

There is a critical need to focus limited resources on sub-groups of patients with obesity where we expect the largest return on investment. This paper identifies patient sub-groups where an investment may result in larger positive economic and health outcomes.

METHODS

The baseline population with obesity was derived from a public survey database and divided into sub-populations defined by demographics and disease status. In 2016, a validated model was used to simulate the incidence of diabetes, absenteeism, and direct medical cost in five care settings. Research findings were derived from the difference in population outcomes with and without weight loss over 15 years. Modeled weight loss scenarios included initial 5% or 12% reduction in body mass index followed by a gradual weight regain. Additional simulations were conducted to show alternative outcomes from different time courses and maintenance scenarios.

RESULTS

Univariate analyses showed that age 45-64, pre-diabetes, female, or obesity class III are independently predictive of larger savings. After considering the correlation between these factors, multivariate analyses projected young females with obesity class I as the optimal sub-group to control obesity-related medical expenditures. In contrast, the population aged 20-35 with obesity class III will yield the best health outcomes. Also, the sub-group aged 45-54 with obesity class I will produce the biggest productivity improvement. Each additional year of weight loss maintained showed increased financial benefits.

CONCLUSIONS

This paper studied the heterogeneity between many sub-populations affected by obesity and recommended different priorities for decision-makers in economic, productivity, and health realms.

摘要

背景

迫切需要将有限的资源集中于肥胖患者的亚组,我们期望在这些亚组中获得最大的投资回报。本文确定了那些投资可能带来更大的积极经济和健康成果的患者亚组。

方法

肥胖基线人群来自一个公共调查数据库,并根据人口统计学和疾病状态分为不同亚人群。2016年,使用一个经过验证的模型来模拟五种护理环境下糖尿病的发病率、旷工率和直接医疗费用。研究结果来自15年中体重减轻和未减轻人群的结果差异。模拟的体重减轻方案包括初始体重指数降低5%或12%,随后逐渐恢复体重。还进行了额外的模拟,以展示不同时间进程和维持方案的替代结果。

结果

单因素分析表明,年龄45 - 64岁、糖尿病前期、女性或III级肥胖是储蓄增加的独立预测因素。在考虑这些因素之间的相关性后,多因素分析预测I级肥胖的年轻女性是控制肥胖相关医疗支出的最佳亚组。相比之下,20 - 35岁的III级肥胖人群将产生最佳的健康结果。此外,45 - 54岁的I级肥胖亚组将带来最大的生产力提高。体重减轻维持的时间每增加一年,经济效益就会增加。

结论

本文研究了受肥胖影响的许多亚人群之间的异质性,并为经济、生产力和健康领域的决策者推荐了不同的优先事项。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验