School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, People's Republic of China.
Dalton Trans. 2018 Jul 31;47(30):10035-10045. doi: 10.1039/c8dt01778f.
Multidentate oxidovanadium(iv) complexes with different geometric configurations [VO(ox)(bpy)(H2O)] 1, [VO(ox)(phen)(H2O)] 2, [VO(ida)(bpy)]·2H2O 3, (phen)[VO(ida)(phen)]·4H2O 4, and (Hphen)[VO(H2O)(nta)]·2H2O 5 [ox = oxalic acid, bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, ida = iminodiacetic acid, nta = nitrilotriacetic acid] have been obtained from the reactions of oxidovanadium sulfate or vanadium pentoxide with oxalates, amino-polycarboxylates and N-heterocyclic ligands in neutral solution by the hydrothermal method, and have been fully characterized by elemental, thermogravimetric analyses and single crystal X-ray diffraction, as well as a wide range of spectroscopic techniques such as FT-IR, UV/Vis, NMR, ESI-MS. The anti-tumor properties of oxidovanadium compounds 1-5 were further evaluated in human HepG2 and SMMC-7721 hepatocellular carcinoma cell lines in vitro. The profiles of cytotoxicity, cell cycle distribution, as well as cell apoptosis upon test compound exposure, were determined by MTT and flow cytometry assays. Compound 2 exhibited a much higher anti-tumor activity than others. The IC50 values of 2 were 5.34 ± 0.034 μM and 29.07 ± 0.017 μM in SMMC-7721 and HepG2 cells after 48 h treatment, respectively. Furthermore, compound 2 could significantly arrest the cell cycle in the S and G2/M phases and further induce cell apoptosis in a dose-dependent manner. The structure-activity relationship (SAR) studies revealed that structural elements, for example, metal components, variations of coordination mode, labile water molecules, chelated ligands etc., probably exert an essential cooperative effect on the antitumor activity. In short, these findings not only provide an accessible model system to exploit V-based complexes as potential simple, safe and effective multifunctional antitumor agents, but also open up a rational approach to shed new light on the selection and optimization of ideal drug candidates.
多齿氧化钒(IV)配合物具有不同的几何构型[VO(ox)(bpy)(H2O)]1、[VO(ox)(phen)(H2O)]2、[VO(ida)(bpy)]·2H2O3、(phen)[VO(ida)(phen)]·4H2O4 和(Hphen)[VO(H2O)(nta)]·2H2O5[ox = 草酸,bpy = 2,2'-联吡啶,phen = 1,10-菲啰啉,ida = 亚氨基二乙酸,nta = 氮三乙酸]是通过水热法由氧化钒硫酸盐或五氧化二钒与草酸盐、氨基多羧酸和 N-杂环配体在中性溶液中反应得到的,并通过元素分析、热重分析和单晶 X 射线衍射以及广泛的光谱技术如 FT-IR、UV/Vis、NMR、ESI-MS 进行了充分表征。进一步在体外人 HepG2 和 SMMC-7721 肝癌细胞系中评估了氧化钒化合物 1-5 的抗肿瘤特性。通过 MTT 和流式细胞术测定细胞毒性、细胞周期分布以及测试化合物暴露后细胞凋亡的轮廓。化合物 2 表现出比其他化合物更高的抗肿瘤活性。化合物 2 在 SMMC-7721 和 HepG2 细胞中分别在 48 小时处理后,IC50 值为 5.34±0.034 μM 和 29.07±0.017 μM。此外,化合物 2 能够显著地将细胞周期阻滞在 S 和 G2/M 期,并进一步以剂量依赖性方式诱导细胞凋亡。结构-活性关系(SAR)研究表明,结构要素,例如金属成分、配位模式的变化、不稳定的水分子、螯合配体等,可能对抗肿瘤活性产生重要的协同作用。总之,这些发现不仅提供了一个易于接近的模型系统,以开发基于 V 的配合物作为潜在的简单、安全和有效的多功能抗肿瘤药物,而且还开辟了一种合理的方法,为理想药物候选物的选择和优化提供了新的思路。