Suppr超能文献

基于细胞的一氧化氮哨兵的开发:确保标记物表达和单峰性。

Development of Cell-Based Sentinels for Nitric Oxide: Ensuring Marker Expression and Unimodality.

作者信息

McKay Ryan, Hauk Pricila, Quan David, Bentley William E

机构信息

Fischell Department of Bioengineering , University of Maryland , College Park , Maryland 20742 , United States.

Institute for Bioscience and Biotechnology Research , University of Maryland , College Park , Maryland 20742 , United States.

出版信息

ACS Synth Biol. 2018 Jul 20;7(7):1694-1701. doi: 10.1021/acssynbio.8b00146. Epub 2018 Jul 9.

Abstract

We generated "sentinel" bacteria that respond to the biomarker nitric oxide (NO) and produce a homogeneous and strong fluorescent response. Our dual-plasmid system consists of a signal "relay" vector that employs an NO-responsive promoter that amplifies the native signal (via expression of T7 Polymerase (T7Pol)) to a second vector responsible for GFP expression. Importantly, to achieve an optimal "sentinel" response, we developed strategies that balance the transcriptional load within cells by altering (i) translation and (ii) activity of the T7Pol. Our optimized genetic circuitry was then used to transform commensal E. coli Nissle, as a proof-of-concept toward an ingestible cell-based sensor for Crohn's disease (CD) that, in turn, is marked by elevated levels of intestinal NO. Thus, the "biosensors" demonstrated here may serve as a simple diagnostic tool, contrasting the standard of care including colonoscopies or biopsies.

摘要

我们构建了对生物标志物一氧化氮(NO)有反应并产生均匀且强烈荧光反应的“哨兵”细菌。我们的双质粒系统由一个信号“中继”载体组成,该载体采用一个对NO有反应的启动子,通过T7聚合酶(T7Pol)的表达将天然信号放大至第二个负责绿色荧光蛋白(GFP)表达的载体。重要的是,为了实现最佳的“哨兵”反应,我们开发了通过改变(i)T7Pol的翻译和(ii)活性来平衡细胞内转录负荷的策略。然后,我们使用优化后的遗传电路转化共生大肠杆菌Nissle,以此作为针对克罗恩病(CD)的可摄入细胞传感器概念验证,而CD的特征是肠道NO水平升高。因此,这里展示的“生物传感器”可作为一种简单的诊断工具,与包括结肠镜检查或活检在内的护理标准形成对比。

相似文献

1
Development of Cell-Based Sentinels for Nitric Oxide: Ensuring Marker Expression and Unimodality.
ACS Synth Biol. 2018 Jul 20;7(7):1694-1701. doi: 10.1021/acssynbio.8b00146. Epub 2018 Jul 9.
2
Rational Design and Characterization of Nitric Oxide Biosensors in Nissle 1917 and Mini SimCells.
ACS Synth Biol. 2021 Oct 15;10(10):2566-2578. doi: 10.1021/acssynbio.1c00223. Epub 2021 Sep 22.
3
Engineered E. coli that detect and respond to gut inflammation through nitric oxide sensing.
ACS Synth Biol. 2012 Oct 19;1(10):451-7. doi: 10.1021/sb3000595. Epub 2012 Aug 21.
4
Nitric oxide and inflammatory bowel diseases.
Eur J Clin Invest. 1998 Nov;28(11):904-7. doi: 10.1046/j.1365-2362.1998.00377.x.
7
8
Aberrant response to commensal Bacteroides thetaiotaomicron in Crohn's disease: an ex vivo human organ culture study.
Inflamm Bowel Dis. 2011 May;17(5):1201-8. doi: 10.1002/ibd.21501. Epub 2010 Nov 4.

引用本文的文献

1
Innovative applications and research advances of bacterial biosensors in medicine.
Front Microbiol. 2025 Apr 23;16:1507491. doi: 10.3389/fmicb.2025.1507491. eCollection 2025.
2
Harnessing the Power of Probiotics: Boosting Immunity and Safeguarding against Various Diseases and Infections.
Recent Adv Antiinfect Drug Discov. 2025;20(1):5-29. doi: 10.2174/0127724344308638240530065552.
4
Engineered Bacteria for Disease Diagnosis and Treatment Using Synthetic Biology.
Microb Biotechnol. 2025 Jan;18(1):e70080. doi: 10.1111/1751-7915.70080.
5
Engineered bacteria as drug delivery vehicles: Principles and prospects.
Eng Microbiol. 2022 Jun 21;2(3):100034. doi: 10.1016/j.engmic.2022.100034. eCollection 2022 Sep.
6
Diagnosing and engineering gut microbiomes.
EMBO Mol Med. 2024 Nov;16(11):2660-2677. doi: 10.1038/s44321-024-00149-4. Epub 2024 Oct 28.
7
Algorithmic Programming of Sequential Logic and Genetic Circuits for Recording Biochemical Concentration in a Probiotic Bacterium.
ACS Synth Biol. 2023 Sep 15;12(9):2632-2649. doi: 10.1021/acssynbio.3c00232. Epub 2023 Aug 15.
8
Gaseous metabolites as therapeutic targets in ulcerative colitis.
World J Gastroenterol. 2023 Jan 28;29(4):682-691. doi: 10.3748/wjg.v29.i4.682.
9
Novel technologies to characterize and engineer the microbiome in inflammatory bowel disease.
Gut Microbes. 2022 Jan-Dec;14(1):2107866. doi: 10.1080/19490976.2022.2107866.

本文引用的文献

2
Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation.
Nat Biotechnol. 2017 Jul;35(7):653-658. doi: 10.1038/nbt.3879. Epub 2017 May 29.
4
Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation.
Mol Syst Biol. 2017 Apr 3;13(4):923. doi: 10.15252/msb.20167416.
5
6
Directed assembly of a bacterial quorum.
ISME J. 2016 Jan;10(1):158-69. doi: 10.1038/ismej.2015.89. Epub 2015 Jun 5.
7
Manipulation of the quorum sensing signal AI-2 affects the antibiotic-treated gut microbiota.
Cell Rep. 2015 Mar 24;10(11):1861-71. doi: 10.1016/j.celrep.2015.02.049.
8
Programmable bacteria detect and record an environmental signal in the mammalian gut.
Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4838-43. doi: 10.1073/pnas.1321321111. Epub 2014 Mar 17.
9
Reprogramming microbes to be pathogen-seeking killers.
ACS Synth Biol. 2014 Apr 18;3(4):228-37. doi: 10.1021/sb400077j. Epub 2013 Sep 13.
10
A kinetic platform to determine the fate of nitric oxide in Escherichia coli.
PLoS Comput Biol. 2013;9(5):e1003049. doi: 10.1371/journal.pcbi.1003049. Epub 2013 May 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验