Hwang In Young, Tan Mui Hua, Koh Elvin, Ho Chun Loong, Poh Chueh Loo, Chang Matthew Wook
School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, Singapore 637459.
ACS Synth Biol. 2014 Apr 18;3(4):228-37. doi: 10.1021/sb400077j. Epub 2013 Sep 13.
Recent examples of new genetic circuits that enable cells to acquire biosynthetic capabilities, such as specific pathogen killing, present an attractive therapeutic application of synthetic biology. Herein, we demonstrate a novel genetic circuit that reprograms Escherichia coli to specifically recognize, migrate toward, and eradicate both dispersed and biofilm-encased pathogenic Pseudomonas aeruginosa cells. The reprogrammed E. coli degraded the mature biofilm matrix and killed the latent cells encapsulated within by expressing and secreting the antimicrobial peptide microcin S and the nuclease DNaseI upon the detection of quorum sensing molecules naturally secreted by P. aeruginosa. Furthermore, the reprogrammed E. coli exhibited directed motility toward the pathogen through regulated expression of CheZ in response to the quorum sensing molecules. By integrating the pathogen-directed motility with the dual antimicrobial activity in E. coli, we achieved signifincantly improved killing activity against planktonic and mature biofilm cells due to target localization, thus creating an active pathogen seeking killer E. coli.
近期,能够使细胞获得生物合成能力(如特异性杀灭病原体)的新型基因回路实例,展现了合成生物学颇具吸引力的治疗应用前景。在此,我们展示了一种新型基因回路,它可对大肠杆菌进行重新编程,使其能够特异性识别、向其迁移并根除分散的以及被生物膜包裹的致病性铜绿假单胞菌细胞。经过重新编程的大肠杆菌在检测到铜绿假单胞菌自然分泌的群体感应分子后,通过表达和分泌抗菌肽微菌素S和核酸酶DNaseI,降解成熟的生物膜基质并杀死包裹在其中的潜伏细胞。此外,经过重新编程的大肠杆菌通过响应群体感应分子,对CheZ进行调控表达,从而表现出向病原体的定向运动能力。通过将大肠杆菌中针对病原体的定向运动能力与双重抗菌活性相结合,由于实现了靶点定位,我们对浮游和成熟生物膜细胞的杀伤活性得到了显著提高,从而创造出一种主动寻找病原体的杀伤性大肠杆菌。