Department of Dermatology, Hainan Provincial Dermatology Disease Hospital, Haikou, China.
Pediatrics, The Hainan Affiliated Hospital of University of South China, Haikou, China.
PLoS One. 2018 Jul 5;13(7):e0198325. doi: 10.1371/journal.pone.0198325. eCollection 2018.
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by a wide spectrum of clinical manifestations and degrees of severity. Few genomic biomarkers for SLE have been validated and employed to inform clinical classifications and decisions. To discover and assess the gene-expression based SLE predictors in published studies, we performed a meta-analysis using our established signature database and a data similarity-driven strategy. From 13 training data sets on SLE gene-expression studies, we identified a SLE meta-signature (SLEmetaSig100) containing 100 concordant genes that are involved in DNA sensors and the IFN signaling pathway. We rigorously examined SLEmetaSig100 with both retrospective and prospective validation in two independent data sets. Using unsupervised clustering, we retrospectively elucidated that SLEmetaSig100 could classify clinical samples into two groups that correlated with SLE disease status and disease activities. More importantly, SLEmetaSig100 enabled personalized stratification demonstrating its ability to prospectively predict SLE disease at the individual patient level. To evaluate the performance of SLEmetaSig100 in predicting SLE, we predicted 1,171 testing samples to be either non-SLE or SLE with positive predictive value (97-99%), specificity (85%-84%), and sensitivity (60-84%). Our study suggests that SLEmetaSig100 has enhanced predictive value to facilitate current SLE clinical classification and provides personalized disease activity monitoring.
系统性红斑狼疮(SLE)是一种自身免疫性疾病,其临床表现和严重程度广泛。目前仅有少数基因组生物标志物经过验证并应用于临床分类和决策。为了发现和评估已发表研究中基于基因表达的 SLE 预测因子,我们使用已建立的特征数据库和数据相似性驱动策略进行了荟萃分析。从 13 个关于 SLE 基因表达研究的训练数据集,我们确定了一个包含 100 个一致基因的 SLE 元特征(SLEmetaSig100),这些基因涉及 DNA 传感器和 IFN 信号通路。我们使用两种独立数据集进行了严格的回顾性和前瞻性验证,对 SLEmetaSig100 进行了检验。通过无监督聚类,我们回顾性地阐明,SLEmetaSig100 可以将临床样本分为两组,与 SLE 疾病状态和疾病活动相关。更重要的是,SLEmetaSig100 可以进行个性化分层,从而能够前瞻性地预测个体患者的 SLE 疾病。为了评估 SLEmetaSig100 预测 SLE 的性能,我们预测了 1171 个测试样本为非 SLE 或 SLE,阳性预测值(97-99%)、特异性(85%-84%)和敏感性(60-84%)都很高。我们的研究表明,SLEmetaSig100 具有增强的预测价值,有助于当前的 SLE 临床分类,并提供个性化的疾病活动监测。