Suppr超能文献

用于简便且选择性4e/4H氧还原的单核铁卟啉的合理设计:通过第二配位层氢键活化O-O键

Rational Design of Mononuclear Iron Porphyrins for Facile and Selective 4e/4H O Reduction: Activation of O-O Bond by 2nd Sphere Hydrogen Bonding.

作者信息

Bhunia Sarmistha, Rana Atanu, Roy Pronay, Martin Daniel J, Pegis Michael L, Roy Bijan, Dey Abhishek

机构信息

Department of Inorganic Chemistry , Indian Association for the Cultivation of Science , 2A Raja SC Mullick Road , Kolkata , West Bengal 700032 , India.

Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States.

出版信息

J Am Chem Soc. 2018 Aug 1;140(30):9444-9457. doi: 10.1021/jacs.8b02983. Epub 2018 Jul 23.

Abstract

Facile and selective 4e/4H electrochemical reduction of O to HO in aqueous medium has been a sought-after goal for several decades. Elegant but synthetically demanding cytochrome c oxidase mimics have demonstrated selective 4e/4H electrochemical O reduction to HO is possible with rate constants as fast as 10 M s under heterogeneous conditions in aqueous media. Over the past few years, in situ mechanistic investigations on iron porphyrin complexes adsorbed on electrodes have revealed that the rate and selectivity of this multielectron and multiproton process is governed by the reactivity of a ferric hydroperoxide intermediate. The barrier of O-O bond cleavage determines the overall rate of O reduction and the site of protonation determines the selectivity. In this report, a series of mononuclear iron porphyrin complexes are rationally designed to achieve efficient O-O bond activation and site-selective proton transfer to effect facile and selective electrochemical reduction of O to water. Indeed, these crystallographically characterized complexes accomplish facile and selective reduction of O with rate constants >10 M s while retaining >95% selectivity when adsorbed on electrode surfaces (EPG) in water. These oxygen reduction reaction rate constants are 2 orders of magnitude faster than all known heme/Cu complexes and these complexes retain >90% selectivity even under rate determining electron transfer conditions that generally can only be achieved by installing additional redox active groups in the catalyst.

摘要

几十年来,在水介质中实现将氧气简便且选择性地进行4电子/4质子电化学还原为过氧化氢一直是人们追求的目标。优雅但合成要求高的细胞色素c氧化酶模拟物已证明,在水介质的非均相条件下,将氧气选择性地进行4电子/4质子电化学还原为过氧化氢是可能的,其速率常数高达10 M⁻¹ s⁻¹。在过去几年中,对吸附在电极上的铁卟啉配合物进行的原位机理研究表明,这个多电子和多质子过程的速率和选择性受氢过氧化铁中间体的反应活性控制。氧-氧键断裂的势垒决定了氧气还原的总速率,质子化位点决定了选择性。在本报告中,一系列单核铁卟啉配合物经过合理设计,以实现高效的氧-氧键活化和位点选择性质子转移,从而实现将氧气简便且选择性地电化学还原为水。实际上,这些经过晶体学表征的配合物能够实现将氧气简便且选择性地还原,速率常数>10 M⁻¹ s⁻¹,同时当吸附在水中的电极表面(EPG)时,选择性保持>95%。这些氧还原反应速率常数比所有已知的血红素/铜配合物快2个数量级,并且即使在通常只能通过在催化剂中安装额外的氧化还原活性基团才能实现的速率决定电子转移条件下,这些配合物仍保持>90%的选择性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验