Suppr超能文献

一种保守的第二配位层残基调节溶菌多糖单加氧酶中的铜活性位点。

A Conserved Second Sphere Residue Tunes Copper Site Reactivity in Lytic Polysaccharide Monooxygenases.

机构信息

Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway.

Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany.

出版信息

J Am Chem Soc. 2023 Aug 30;145(34):18888-18903. doi: 10.1021/jacs.3c05342. Epub 2023 Aug 16.

Abstract

Lytic polysaccharide monooxygenases (LPMOs) are powerful monocopper enzymes that can activate strong C-H bonds through a mechanism that remains largely unknown. Herein, we investigated the role of a conserved glutamine/glutamate in the second coordination sphere. Mutation of the Gln in AA9C to Glu, Asp, or Asn showed that the nature and distance of the headgroup to the copper fine-tune LPMO functionality and copper reactivity. The presence of Glu or Asp close to the copper lowered the reduction potential and decreased the ratio between the reduction and reoxidation rates by up to 500-fold. All mutants showed increased enzyme inactivation, likely due to changes in the confinement of radical intermediates, and displayed changes in a protective hole-hopping pathway. Electron paramagnetic resonance (EPR) and X-ray absorption spectroscopic (XAS) studies gave virtually identical results for all AA9C variants, showing that the mutations do not directly perturb the Cu(II) ligand field. DFT calculations indicated that the higher experimental reoxidation rate observed for the Glu mutant could be reconciled if this residue is protonated. Further, for the glutamic acid form, we identified a Cu(III)-hydroxide species formed in a single step on the HO splitting path. This is in contrast to the Cu(II)-hydroxide and hydroxyl intermediates, which are predicted for the WT and the unprotonated glutamate variant. These results show that this second sphere residue is a crucial determinant of the catalytic functioning of the copper-binding histidine brace and provide insights that may help in understanding LPMOs and LPMO-inspired synthetic catalysts.

摘要

溶细胞多糖单加氧酶(LPMOs)是一种强大的单铜酶,可以通过一种很大程度上未知的机制激活强 C-H 键。在此,我们研究了第二配位球中保守的谷氨酰胺/谷氨酸的作用。将 AA9C 中的谷氨酰胺突变为谷氨酸、天冬氨酸或天冬酰胺,结果表明,侧基的性质和距离可以微调 LPMO 的功能和铜的反应性。靠近铜的谷氨酸或天冬氨酸的存在降低了还原电位,并将还原和再氧化速率之比降低了多达 500 倍。所有突变体都显示出酶失活增加,这可能是由于自由基中间体的约束发生了变化,并且显示出保护孔跳跃途径的变化。电子顺磁共振(EPR)和 X 射线吸收光谱(XAS)研究对所有 AA9C 变体给出了几乎相同的结果,表明突变不会直接干扰 Cu(II)配体场。密度泛函理论(DFT)计算表明,如果该残基质子化,观察到的 Glu 突变体更高的实验再氧化速率可以得到解释。此外,对于谷氨酸形式,我们在 HO 分裂途径上一步形成了 Cu(III)-羟化物。这与 Cu(II)-羟化物和羟基中间体形成对比,这些中间体是 WT 和未质子化的谷氨酸变体的预测产物。这些结果表明,这个第二配位球残基是铜结合组氨酸支链催化功能的关键决定因素,并提供了可能有助于理解 LPMOs 和受 LPMO 启发的合成催化剂的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e08e/10472438/7e7946c93d72/ja3c05342_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验