Suppr超能文献

通过四维电子显微镜直接可视化液体中等离子体纳米颗粒的光形态反应动力学

Direct Visualization of Photomorphic Reaction Dynamics of Plasmonic Nanoparticles in Liquid by Four-Dimensional Electron Microscopy.

作者信息

Fu Xuewen, Chen Bin, Li Caizhen, Li Heng, Liao Zhi-Min, Yu Dapeng, Zewail Ahmed H

机构信息

Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics , California Institute of Technology , Pasadena , California 91125 , United States.

State Key Laboratory for Mesoscopic Physics, School of Physics , Peking University , Beijing 100871 , China.

出版信息

J Phys Chem Lett. 2018 Jul 19;9(14):4045-4052. doi: 10.1021/acs.jpclett.8b01360. Epub 2018 Jul 9.

Abstract

Liquid-cell electron microscopy (LC-EM) provides a unique approach for in situ imaging of morphology changes of nanocrystals in liquids under electron beam irradiation. However, nanoscale real-time imaging of chemical and physical reaction processes in liquids under optical stimulus is still challenging. Here, we report direct observation of photomorphic reaction dynamics of gold nanoparticles (AuNPs) in water by liquid-cell four-dimensional electron microscopy (4D-EM) with high spatiotemporal resolution. The photoinduced agglomeration, coalescence, and fusion dynamics of AuNPs at different temperatures are studied. At low laser fluences, the AuNPs show a continuous aggregation in several seconds, and the aggregate size decreases with increasing fluence. At higher fluences close to the melting threshold of AuNPs, the aggregates further coalesced into nanoplates. While at fluences far above the melting threshold, the aggregates fully fuse into bigger NPs, which is completed within tens of nanoseconds. This liquid-cell 4D-EM would also permit study of other numerical physical and chemical reaction processes in their native environments.

摘要

液池电子显微镜(LC-EM)为在电子束照射下原位成像液体中纳米晶体的形态变化提供了一种独特的方法。然而,在光学刺激下对液体中化学和物理反应过程进行纳米级实时成像仍然具有挑战性。在此,我们报告了通过具有高时空分辨率的液池四维电子显微镜(4D-EM)直接观察水中金纳米颗粒(AuNP)的光形态反应动力学。研究了不同温度下AuNP的光致团聚、聚结和融合动力学。在低激光通量下,AuNP在几秒钟内呈现连续聚集,且聚集体尺寸随通量增加而减小。在接近AuNP熔化阈值的较高通量下,聚集体进一步聚结成纳米片。而在远高于熔化阈值的通量下,聚集体完全融合成更大的纳米颗粒,这在几十纳秒内完成。这种液池4D-EM还将允许在其原生环境中研究其他许多物理和化学反应过程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验