Zulfiqar Abid, Honkanen Mari, Vippola Minnamari
Faculty of Engineering and Natural Sciences, Tampere University, Tampere, FI-33720, Finland.
Tampere Microscopy Center, Tampere University, Tampere, FI-33720, Finland.
Small. 2024 Dec;20(51):e2406943. doi: 10.1002/smll.202406943. Epub 2024 Oct 8.
Recent efforts on manipulating metal nanoparticles (NPs) using an electron beam have offered new insights into nanoparticle behavior, structural transition, and the emergence of new properties. Despite an increasing understanding of the dynamics of electron beam-induced coalescence of NPs, several phenomena are yet to be investigated. Here, we show that repulsion between two NPs is as favorable as coalescence under electron beam irradiation at room temperature. Using small-sized (D ≈ 5.9 nm) and large-sized (D ≈ 11.0 nm) gold (Au) NPs, and different electron dose rates, a unique sequential attraction-repulsion between NPs is disclosed. The real-time in situ transmission electron microscopy imaging suggest that at a low dose rate, two small-sized AuNPs with 1.0 nm particle-particle distance undergo repulsion to 18 nm with a diffusion rate of 0.4 nm min. For large-sized AuNPs, the repulsion rate is 0.08 nm min at a low dose rate and is comparable to that of small-sized AuNPs at a high dose rate. Surprisingly, large-sized AuNPs at a high electron dose rate displayed attraction in the first 15 min, followed by rapid repulsion. This unique sequential attraction-repulsion behavior of NPs offers possibilities to manipulate interparticle distance and properties without inducing dimensional changes for advanced photonic and plasmonic nanodevices.
近期利用电子束操控金属纳米颗粒(NPs)的研究为纳米颗粒行为、结构转变及新特性的出现提供了新的见解。尽管人们对电子束诱导纳米颗粒聚结的动力学有了越来越深入的了解,但仍有一些现象有待研究。在此,我们表明在室温下电子束辐照时,两个纳米颗粒之间的排斥与聚结一样容易发生。使用小尺寸(D≈5.9纳米)和大尺寸(D≈11.0纳米)的金(Au)纳米颗粒以及不同的电子剂量率,揭示了纳米颗粒之间独特的顺序吸引-排斥现象。实时原位透射电子显微镜成像表明,在低剂量率下,两个颗粒间距为1.0纳米的小尺寸金纳米颗粒会发生排斥,间距增大到18纳米,扩散速率为0.4纳米/分钟。对于大尺寸金纳米颗粒,低剂量率下的排斥速率为0.08纳米/分钟,与高剂量率下小尺寸金纳米颗粒的排斥速率相当。令人惊讶的是,高电子剂量率下的大尺寸金纳米颗粒在最初15分钟内表现出吸引,随后迅速排斥。纳米颗粒这种独特的顺序吸引-排斥行为为先进的光子和等离子体纳米器件在不引起尺寸变化的情况下操控颗粒间距离和特性提供了可能性。