Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL, 33431, USA.
School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
Sci Rep. 2018 Jul 5;8(1):10224. doi: 10.1038/s41598-018-28503-w.
We present a comprehensive theoretical-experimental framework for quantitative, high-throughput study of cell biomechanics. An improved electrodeformation method has been developed by combing dielectrophoresis and amplitude shift keying, a form of amplitude modulation. This method offers a potential to fully control the magnitude and rate of deformation in cell membranes. In healthy human red blood cells, nonlinear viscoelasticity of cell membranes is obtained through variable amplitude load testing. A mathematical model to predict cellular deformations is validated using the experimental results of healthy human red blood cells subjected to various types of loading. These results demonstrate new capabilities of the electrodeformation technique and the validated mathematical model to explore the effects of different loading configurations on the cellular mechanical behavior. This gives it more advantages over existing methods and can be further developed to study the effects of strain rate and loading waveform on the mechanical properties of biological cells in health and disease.
我们提出了一个全面的理论-实验框架,用于定量、高通量研究细胞生物力学。通过结合介电泳和振幅键控(一种调幅形式),我们开发了一种改进的电极变形方法。这种方法有可能完全控制细胞膜的变形幅度和速率。在健康的人类红细胞中,通过变幅加载测试获得细胞膜的非线性粘弹性。使用健康人类红细胞在各种类型的加载下的实验结果验证了预测细胞变形的数学模型。这些结果证明了电极变形技术和验证后的数学模型在探索不同加载配置对细胞力学行为的影响方面的新能力。与现有方法相比,它具有更多的优势,并且可以进一步开发,以研究应变率和加载波形对健康和疾病状态下生物细胞机械性能的影响。