Suppr超能文献

深度语法分析器:利用深度学习提高个人健康体验推文分类的准确性

Deep Gramulator: Improving Precision in the Classification of Personal Health-Experience Tweets with Deep Learning.

作者信息

Calix Ricardo A, Gupta Ravish, Gupta Matrika, Jiang Keyuan

机构信息

Purdue University Northwest, Hammond, USA.

Purdue University Northwest Hammond, USA.

出版信息

Proceedings (IEEE Int Conf Bioinformatics Biomed). 2017 Nov;2017:1154-1159. doi: 10.1109/BIBM.2017.8217820. Epub 2017 Dec 18.

Abstract

Health surveillance is an important task to track the happenings related to human health, and one of its areas is pharmacovigilance. Pharmacovigilance tracks and monitors safe use of pharmaceutical products. Pharmacovigilance involves tracking side effects that may be caused by medicines and other health related drugs. Medical professionals have a difficult time collecting this information. It is anticipated that social media could help to collect this data and track side effects. Twitter data can be used for this task given that users post their personal health related experiences on-line. One problem with Twitter data, however, is that it contains a lot of noise. Therefore, an approach is needed to remove the noise. In this paper, several machine learning algorithms including deep neural nets are used to build classifiers that can help to detect these Personal Experience Tweets (PETs). Finally, we propose a method called the Deep Gramulator that improves results. Results of the analysis are presented and discussed.

摘要

健康监测是追踪与人类健康相关事件的一项重要任务,其领域之一是药物警戒。药物警戒追踪并监测药品的安全使用情况。药物警戒涉及追踪可能由药物及其他与健康相关的药物引起的副作用。医学专业人员在收集此类信息时面临困难。预计社交媒体有助于收集这些数据并追踪副作用。鉴于用户会在网上发布与个人健康相关的经历,推特数据可用于此任务。然而,推特数据存在的一个问题是它包含大量噪声。因此,需要一种方法来去除噪声。在本文中,使用了包括深度神经网络在内的几种机器学习算法来构建分类器,以帮助检测这些个人经历推文(PET)。最后,我们提出了一种名为深度语法生成器的方法来改进结果。并呈现和讨论了分析结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b75d/6029703/dafc3ad39d53/nihms976854f1.jpg

相似文献

3
Identifying personal health experience tweets with deep neural networks.使用深度神经网络识别个人健康体验推文。
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:1174-1177. doi: 10.1109/EMBC.2017.8037039.
6
Utilizing Twitter data for analysis of chemotherapy.利用 Twitter 数据进行化疗分析。
Int J Med Inform. 2018 Dec;120:92-100. doi: 10.1016/j.ijmedinf.2018.10.002. Epub 2018 Oct 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验