Suppr超能文献

优化日本人群种系致病性变异风险评估的预测方法。

Optimization of prediction methods for risk assessment of pathogenic germline variants in the Japanese population.

机构信息

Department of Breast Surgery, Kyoto University, Kyoto, Japan.

Department of Clinical Oncology, Kyoto University Hospital, Kyoto, Japan.

出版信息

Cancer Sci. 2021 Aug;112(8):3338-3348. doi: 10.1111/cas.14986. Epub 2021 Jun 28.

Abstract

Predicting pathogenic germline variants (PGVs) in breast cancer patients is important for selecting optimal therapeutics and implementing risk reduction strategies. However, PGV risk factors and the performance of prediction methods in the Japanese population remain unclear. We investigated clinicopathological risk factors using the Tyrer-Cuzick (TC) breast cancer risk evaluation tool to predict BRCA PGVs in unselected Japanese breast cancer patients (n = 1,995). Eleven breast cancer susceptibility genes were analyzed using target-capture sequencing in a previous study; the PGV prevalence in BRCA1, BRCA2, and PALB2 was 0.75%, 3.1%, and 0.45%, respectively. Significant associations were found between the presence of BRCA PGVs and early disease onset, number of familial cancer cases (up to third-degree relatives), triple-negative breast cancer patients under the age of 60, and ovarian cancer history (all P < .0001). In total, 816 patients (40.9%) satisfied the National Comprehensive Cancer Network (NCCN) guidelines for recommending multigene testing. The sensitivity and specificity of the NCCN criteria for discriminating PGV carriers from noncarriers were 71.3% and 60.7%, respectively. The TC model showed good discrimination for predicting BRCA PGVs (area under the curve, 0.75; 95% confidence interval, 0.69-0.81). Furthermore, use of the TC model with an optimized cutoff of TC score ≥0.16% in addition to the NCCN guidelines improved the predictive efficiency for high-risk groups (sensitivity, 77.2%; specificity, 54.8%; about 11 genes). Given the influence of ethnic differences on prediction, we consider that further studies are warranted to elucidate the role of environmental and genetic factors for realizing precise prediction.

摘要

预测乳腺癌患者的致病性种系变异(PGV)对于选择最佳治疗方法和实施降低风险策略非常重要。然而,PGV 风险因素以及预测方法在日本人群中的表现仍不清楚。我们使用 Tyrer-Cuzick(TC)乳腺癌风险评估工具调查了临床病理危险因素,以预测未经选择的日本乳腺癌患者中的 BRCA PGV(n=1995)。在之前的研究中,使用靶向捕获测序分析了 11 个乳腺癌易感基因;BRCA1、BRCA2 和 PALB2 中的 PGV 患病率分别为 0.75%、3.1%和 0.45%。BRCA PGV 的存在与疾病早期发病、家族癌症病例数(最多三级亲属)、60 岁以下三阴性乳腺癌患者和卵巢癌病史之间存在显著关联(均 P<0.0001)。共有 816 名患者(40.9%)符合美国国家综合癌症网络(NCCN)推荐多基因检测的指南。NCCN 标准区分 PGV 携带者和非携带者的敏感性和特异性分别为 71.3%和 60.7%。TC 模型在预测 BRCA PGV 方面具有良好的区分能力(曲线下面积,0.75;95%置信区间,0.69-0.81)。此外,除了 NCCN 指南外,使用 TC 模型并将 TC 评分优化截断值设为≥0.16%,可以提高高危人群的预测效率(敏感性,77.2%;特异性,54.8%;约 11 个基因)。鉴于种族差异对预测的影响,我们认为有必要进一步研究以阐明环境和遗传因素在实现精准预测中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2154/8353892/2af56bcbbb55/CAS-112-3338-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验