Yu Jian, Yuan Wentao, Yang Hangsheng, Xu Qiang, Wang Yong, Zhang Ze
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
DENSsolutions, Informaticalaan 12, 2628ZD, Delft, The Netherlands.
Angew Chem Int Ed Engl. 2018 Aug 27;57(35):11344-11348. doi: 10.1002/anie.201806541. Epub 2018 Jul 27.
Acquiring the kinetics of gas-nanoparticle fast reactions under ambient pressure is a challenge owing to the lack of appropriate in situ techniques. Now an approach has been developed that integrates time-resolved in situ electron diffraction and an atmospheric gas cell system in transmission electron microscopy, allowing quantitative structural information to be obtained under ambient pressure with millisecond time resolution. The ultrafast oxidation kinetics of Ni nanoparticles in oxygen was vividly obtained. In contrast to the well-accepted Wagner and Mott-Cabrera models (diffusion-dominated), the oxidation of Ni nanoparticles is linear at the initial stage (<0.5 s), and follows the Avrami-Erofeev model (n=1.12) at the following stage, which indicates the oxidation of Ni nanoparticles is a nucleation and growth dominated process. This study gives new insights into Ni oxidation and paves the way to study the fast reaction kinetics of nanoparticles using ultrafast in situ techniques.
由于缺乏合适的原位技术,在环境压力下获取气体-纳米颗粒快速反应的动力学是一项挑战。现在已经开发出一种方法,该方法将时间分辨原位电子衍射与透射电子显微镜中的常压气体池系统相结合,从而能够在环境压力下以毫秒级时间分辨率获得定量的结构信息。生动地获得了镍纳米颗粒在氧气中的超快氧化动力学。与广为接受的瓦格纳和莫特-卡布雷拉模型(扩散主导)不同,镍纳米颗粒的氧化在初始阶段(<0.5秒)是线性的,在随后阶段遵循阿弗拉米-埃罗费耶夫模型(n = 1.12),这表明镍纳米颗粒的氧化是一个成核和生长主导的过程。这项研究为镍氧化提供了新的见解,并为使用超快原位技术研究纳米颗粒的快速反应动力学铺平了道路。